JBoss.orgCommunity Documentation

Chapter 1. Introduction to Mobicents MTP Library

1.1. Time Division Multiplexing
1.2. MTP Introduction

Common Channel Signaling System No. 7 (i.e., SS7 or C7) is a global standard for telecommunications defined by the International Telecommunication Union (ITU) Telecommunication Standardization Sector (ITU-T) . The standard defines the procedures and protocol by which network elements in the public switched telephone network (PSTN) ) exchange information over a digital signaling network to effect wireless (cellular) and wireline call setup, routing and control. The ITU definition of SS7 allows for national variants such as the American National Standards Institute (ANSI) and Bell Communications Research (Telcordia Technologies) standards used in North America and the European Telecommunications Standards Institute ( ETSI ) standard used in Europe.

The hardware and software functions of the SS7 protocol are divided into functional abstractions called "levels". These levels map loosely to the Open Systems Interconnect (OSI) 7-layer model defined by the International Standards Organization (ISO) .

SS7 Stack overview

In circuit switched networks such as the Public Switched Telephone Network (PSTN) there exists the need to transmit multiple subscribers’ calls along the same transmission medium. To accomplish this, network designers make use of TDM. TDM allows switches to create channels, also known as tributaries, within a transmission stream. A standard DS0 voice signal has a data bit rate of 64 kbit/s, determined using Nyquist’s sampling criterion. TDM takes frames of the voice signals and multiplexes them into a TDM frame which runs at a higher bandwidth. So if the TDM frame consists of n voice frames, the bandwidth will be n*64 kbit/s. Each voice sample timeslot in the TDM frame is called a channel . In European systems, TDM frames contain 30 digital voice channels, and in American systems, they contain 24 channels. Both standards also contain extra bits (or bit timeslots) for signalling (SS7) and synchronisation bits. Multiplexing more than 24 or 30 digital voice channels is called higher order multiplexing. Higher order multiplexing is accomplished by multiplexing the standard TDM frames.For example, a European 120 channel TDM frame is formed by multiplexing four standard 30 channel TDM frames.At each higher order multiplex, four TDM frames from the immediate lower order are combined, creating multiplexes with a bandwidth of n x 64 kbit/s, where n = 120, 480, 1920, etc.

The Message Transfer Part (MTP) is divided into three levels. The lowest level, MTP Level 1, is equivalent to the OSI Physical Layer. MTP Level 1 defines the physical, electrical, and functional characteristics of the digital signaling link. Physical interfaces defined include E-1 (2048 kb/s; 32 64 kb/s channels), DS-1 (1544 kb/s; 24 64kb/s channels), V.35 (64 kb/s), DS-0 (64 kb/s), and DS-0A (56 kb/s). MTP Level 2 ensures accurate end-to-end transmission of a message across a signaling link. Level 2 implements flow control, message sequence validation, and error checking. When an error occurs on a signaling link, the message (or set of messages) is retransmitted. MTP Level 2 is equivalent to the OSI Data Link Layer. MTP Level 3 provides message routing between signaling points in the SS7 network. MTP Level 3 re-routes traffic away from failed links and signaling points and controls traffic when congestion occurs. MTP Level 3 is equivalent to the OSI Network Layer.