
Mobicents xcap-diff Protocol User Guide

by Eduardo Martins, Bartosz Baranowski, and Alexandre Mendonça

iii

Preface ... v

1. Document Conventions .. v

1.1. Typographic Conventions .. v

1.2. Pull-quote Conventions .. vii

1.3. Notes and Warnings .. vii

2. Provide feedback to the authors! .. viii

1. Introduction to xcap-diff Protocol ... 1

2. Design Overview ... 3

2.1. XML Patch Instruction Builder ... 4

2.2. XCAP Attribute Patch Builder .. 6

2.3. XCAP Element Patch Builder .. 7

2.4. XCAP Document Patch Builder ... 8

2.5. XCAP Patch Builder .. 9

2.6. XCAP Patch Applier .. 10

2.7. XCAP Diff Factory .. 10

3. Setup ... 13

3.1. Software Prerequisites .. 13

3.2. Mobicents Source Code .. 13

3.2.1. Release Source Code Building .. 13

3.2.2. Development Trunk Source Building .. 14

3.3. Configuration .. 14

4. Examples ... 15

4.1. Attribute Replace Patch ... 15

4.2. Attribute Add Patch ... 16

4.3. Attribute Add Patch ... 17

4.4. Element Replace Patch ... 18

4.5. XPath and Namespaces .. 19

A. Revision History .. 21

Index ... 23

iv

v

Preface

1. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention

to specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts [https://

fedorahosted.org/liberation-fonts/] set. The Liberation Fonts set is also used in HTML editions if

the set is installed on your system. If not, alternative but equivalent typefaces are displayed. Note:

Red Hat Enterprise Linux 5 and later includes the Liberation Fonts set by default.

1.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These

conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to

highlight key caps and key-combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current

working directory, enter the cat my_next_bestselling_novel command at the

shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a key cap, all presented in Mono-spaced

Bold and all distinguishable thanks to context.

Key-combinations can be distinguished from key caps by the hyphen connecting each part of a

key-combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F1 to switch to the first virtual terminal. Press Ctrl+Alt+F7 to

return to your X-Windows session.

The first sentence highlights the particular key cap to press. The second highlights two sets of

three key caps, each set pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values

mentioned within a paragraph will be presented as above, in Mono-spaced Bold. For example:

File-related classes include filesystem for file systems, file for files, and dir

for directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialogue

box text; labelled buttons; check-box and radio button labels; menu titles and sub-menu titles.

For example:

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

vi

Choose System > Preferences > Mouse from the main menu bar to launch

Mouse Preferences. In the Buttons tab, click the Left-handed mouse check

box and click Close to switch the primary mouse button from the left to the right

(making the mouse suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications >

Accessories > Character Map from the main menu bar. Next, choose Search

> Find from the Character Map menu bar, type the name of the character in the

Search field and click Next. The character you sought will be highlighted in the

Character Table. Double-click this highlighted character to place it in the Text

to copy field and then click the Copy button. Now switch back to your document

and choose Edit > Paste from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-

specific menu names; and buttons and text found within a GUI interface, all presented in

Proportional Bold and all distinguishable by context.

Note the > shorthand used to indicate traversal through a menu and its sub-menus. This is to

avoid the difficult-to-follow 'Select Mouse from the Preferences sub-menu in the System menu

of the main menu bar' approach.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether Mono-spaced Bold or Proportional Bold, the addition of Italics indicates replaceable or

variable text. Italics denotes text you do not input literally or displayed text that changes depending

on circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name

at a shell prompt. If the remote machine is example.com and your username on

that machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file

system. For example, to remount the /home file system, the command is mount

-o remount /home.

To see the version of a currently installed package, use the rpm -q package

command. It will return a result as follows: package-version-release.

Note the words in bold italics above username, domain.name, file-system, package, version and

release. Each word is a placeholder, either for text you enter when issuing a command or for text

displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new

and important term. For example:

When the Apache HTTP Server accepts requests, it dispatches child processes

or threads to handle them. This group of child processes or threads is known as

Pull-quote Conventions

vii

a server-pool. Under Apache HTTP Server 2.0, the responsibility for creating and

maintaining these server-pools has been abstracted to a group of modules called

Multi-Processing Modules (MPMs). Unlike other modules, only one module from

the MPM group can be loaded by the Apache HTTP Server.

1.2. Pull-quote Conventions

Two, commonly multi-line, data types are set off visually from the surrounding text.

Output sent to a terminal is set in Mono-spaced Roman and presented thus:

books Desktop documentation drafts mss photos stuff svn

books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in Mono-spaced Roman but are presented and highlighted as

follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient

{

 public static void main(String args[])

 throws Exception

 {

 InitialContext iniCtx = new InitialContext();

 Object ref = iniCtx.lookup("EchoBean");

 EchoHome home = (EchoHome) ref;

 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));

 }

}

1.3. Notes and Warnings

Finally, we use three visual styles to draw attention to information that might otherwise be

overlooked.

Preface

viii

Note

A note is a tip or shortcut or alternative approach to the task at hand. Ignoring a

note should have no negative consequences, but you might miss out on a trick that

makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that

only apply to the current session, or services that need restarting before an update

will apply. Ignoring Important boxes won't cause data loss but may cause irritation

and frustration.

Warning

A Warning should not be ignored. Ignoring warnings will most likely cause data

loss.

2. Provide feedback to the authors!

If you find a typographical error in this manual, or if you have thought of a way to make this manual

better, we would love to hear from you! Please submit a report in the the Issue Tracker [http://

code.google.com/p/mobicents/issues/list], against the product Mobicents xcap-diff Protocol, or

contact the authors.

When submitting a bug report, be sure to mention the manual's identifier:

XCAPDiff_Protocols_User_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when

describing it. If you have found an error, please include the section number and some of the

surrounding text so we can find it easily.

http://code.google.com/p/mobicents/issues/list
http://code.google.com/p/mobicents/issues/list
http://code.google.com/p/mobicents/issues/list

Chapter 1.

1

Introduction to xcap-diff Protocol
XCAP stands for Extensible Markup Language (XML) Configuration Access Protocol. It is used

to read, write and modify documents published on XCAP enabled servers. Such servers maintain

said documents along with list of clients subscribed to the changes. Each change to document on

server requires server to notify registered(subscribed) clients. In simplest scenario, client, after it

has been notified, rereads whole document from server with XCAP call. However this is inefficient

since documents may be big, client may be interested only in part of the document - in particular

cases change to that part may not happen. Moreover, frequent pulls on XCAP resources, increase

dramatically amount and size of network traffic.

To counter this problem xcap-diff has been created. It is augmented version of XML Diff

. In general , diff function allows server to generate difference patch and send to clients only

changed content, and only in cases when client is interested in change. This approach reduces not

only traffic content size, but also number of messages exchanged between server and registered

clients.

The xcap-diff generates minimal difference patch between two documents or their elements

based on part to which client subscribed. Generated patch can be applied to not changed

document(ie. at client side) in order to have identical document as one from which patch has been

generated.

2

Chapter 2.

3

Design Overview
The xcap-diff is defined in http://tools.ietf.org/html/rfc5875 . However to understand it fully you

need to have understanding of following:

XML

XPath

XPath expression are used to navigate through XML document and identify specific nodes in

it. XPath is defined in this http://www.w3.org/TR/xpath20/ document.

XCAP

Minimal knowledge how XCAP interaction looks like is required. This protocol is defined in

http://tools.ietf.org/html/rfc4825

XML Diff/XML Patch

XCAP Diff is an extension to XML Diff . Strong knowledge of the latter is required. This

protocol is defined in http://tools.ietf.org/html/rfc5261

SIP Notification framework

http://tools.ietf.org/html/rfc3265

XCAP Diff Notification framework

http://tools.ietf.org/html/rfc5875

The xcap-diff has been divided into following components:

XML Patch instructions builder

component which is capable of creating patching instructions consistent with rfc5261 .

Attribute Patch instruction builder

component which is capable of creating xcap-diff attribute patching instructions

Element Patch instruction builder

component which is capable of creating xcap-diff element patching instructions

Document Patch instruction builder

component which is capable of creating xcap-diff document wide patch instructions(in

particular aggregate instructions generated by Section 2.1, “XML Patch Instruction Builder”)

XCAP Patch builder

simple component which builds well formed document from patching operations.

XCAP Patch applier

simple component which is capable of applying patching instructions to document.

Chapter 2. Design Overview

4

The API definition for all above components make use of Java generics. Reason for this is to make

this library agnostic to specific implementation of XML manipulation library.

2.1. XML Patch Instruction Builder

XML Patch instruction builder is defined as follows:

public interface XmlPatchOperationsBuilder<D,P, E, N> {

 public static final String XML_PATCH_OPS_NAMESPACE = "urn:ietf:params:xml:schema:patch-

ops";

 public enum Pos {

 prepend, before, after

 }

 public enum Ws {

 before, after, both

 }

 public P addAttribute(String sel, String attrName, String attrValue,

 Map<String, String> namespaceBindings) throws BuildPatchException;

 public P addElement(String sel, E element,

 Map<String, String> namespaceBindings) throws BuildPatchException;

 public P addNode(String sel, Pos pos, N node,

 Map<String, String> namespaceBindings) throws BuildPatchException;

 public P addPrefixNamespaceDeclaration(String sel, String namespacePrefix,

 String namespaceValue, Map<String, String> namespaceBindings)

 throws BuildPatchException;

 public P replaceAttribute(String sel, String attributeValue,

 Map<String, String> namespaceBindings) throws BuildPatchException;

 public P replaceElement(String sel, E element,

 Map<String, String> namespaceBindings) throws BuildPatchException;

 public P replaceNode(String sel, N node,

 Map<String, String> namespaceBindings) throws BuildPatchException;

XML Patch Instruction Builder

5

 public P replacePrefixNamespaceDeclaration(String sel,

 String namespaceValue, Map<String, String> namespaceBindings)

 throws BuildPatchException;

 public P removeAttribute(String sel, Map<String, String> namespaceBindings)

 throws BuildPatchException;

 public P removeElement(String sel, Ws ws,

 Map<String, String> namespaceBindings) throws BuildPatchException;

 public P removeNode(String sel, Map<String, String> namespaceBindings)

 throws BuildPatchException;

 public P removePrefixNamespaceDeclaration(String sel,

 Map<String, String> namespaceBindings) throws BuildPatchException;

 public P[] buildPatchInstructions(D originalDocument, D patchedDocument)

 throws BuildPatchException;

}

Above code uses following generics:

D

the document type, defines what is the concrete type of XML documents used

P

the patching instruction type

E

the element type

N

the node type

public P addAttribute(String sel, String attrName, String attrValue, Map<String, String>

namespaceBindings) throws BuildPatchException;

Creates patch operation to add new attribute into document.

public P addElement(String sel, E element, Map<String, String> namespaceBindings) throws

BuildPatchException;

Creates patch operation to add new element into document.

public P addNode(String sel, N node, Map<String, String> namespaceBindings) throws

BuildPatchException;

Creates patch operation to add new node into document.

Chapter 2. Design Overview

6

public P addPrefixNamespaceDeclaration(String sel, String namespacePrefix, String

namespaceValue, Map<String, String> namespaceBindings) throws BuildPatchException;

Creates patch operation to insert new namespace into document.

public P replaceAttribute(String sel, String attributeValue, Map<String, String>

namespaceBindings) throws BuildPatchException;

Creates patch operation to replace existing attribute.

public P replaceElement(String sel, E element, Map<String, String> namespaceBindings) throws

BuildPatchException;

Creates patch operation to replace exisiting element in document.

public P replaceNode(String sel, N node, Map<String, String> namespaceBindings) throws

BuildPatchException;

Creates patch operation to replace existing node in document.

public P replacePrefixNamespaceDeclaration(String sel, String namespaceValue, Map<String,

String> namespaceBindings) throws BuildPatchException;

Creates patch operation to replace exisiting namespace.

public P removeAttribute(String sel, Map<String, String> namespaceBindings) throws

BuildPatchException;

Creates patch operation to remove exisiting attribute from document.

public P removeElement(String sel, Ws ws, Map<String, String> namespaceBindings) throws

BuildPatchException;

Creates patch operation to remove existing element from document.

public P removeNode(String sel, Map<String, String> namespaceBindings) throws

BuildPatchException;

Creates patch operation to remove existing node from document.

public P removePrefixNamespaceDeclaration(String sel, Map<String, String>

namespaceBindings) throws BuildPatchException;

Creates patch operation to remove existing namespace from document.

public P[] buildPatchInstructions(D originalDocument, D patchedDocument) throws

BuildPatchException;

Compares two documents and creates set of patching operations that need to be applied to

first document to be equal to patched one.

2.2. XCAP Attribute Patch Builder

XCAP Attribute Patch instruction builder is defined as follows

public interface AttributePatchComponentBuilder<P> {

XCAP Element Patch Builder

7

 public P buildPatchComponent(String sel, String attributeValue,

 Map<String, String> namespaceBindings) throws BuildPatchException;

 public P buildPatchComponent(String sel,

 Map<String, String> namespaceBindings) throws BuildPatchException;

}

Above code uses following generics:

P

the patching instruction type

public P buildPatchComponent(String sel, String attributeValue, Map<String, String>

namespaceBindings) throws BuildPatchException;

Creates patch operation which indicates value of certain attribute in document.

public P buildPatchComponent(String sel, Map<String, String> namespaceBindings) throws

BuildPatchException;

Creates patch operation to indicate certain attribute does not exist in document.

2.3. XCAP Element Patch Builder

XCAP Element Patch instruction builder is defined in very similar manner as Attribute one:

public interface ElementPatchComponentBuilder<C, E> {

 public P buildPatchComponent(String sel, E element,

 Map<String, String> namespaceBindings) throws BuildPatchException;

 public P buildPatchComponent(String sel, boolean exists,

 Map<String, String> namespaceBindings) throws BuildPatchException;

}

Above code uses following generics:

Chapter 2. Design Overview

8

P

the patching instruction type

public P buildPatchComponent(String sel, String attributeValue, Map<String, String>

namespaceBindings) throws BuildPatchException;

Creates patch operation which indicates value of certain element in document.

public P buildPatchComponent(String sel, boolean exists, Map<String, String>

namespaceBindings) throws BuildPatchException;

Creates patch operation to indicate if certain element exists in document.

2.4. XCAP Document Patch Builder

XCAP Document Patch instruction builder is defined as follows:

public interface DocumentPatchComponentBuilder<P, D, E, N> {

 public P buildPatchComponent(String sel, String previousETag,

 String newETag, C[] patchingInstructions)

 throws BuildPatchException;

 public P getBodyNotChangedPatchingInstruction() throws BuildPatchException;

 public XmlPatchOperationsBuilder<D,P, E, N> getXmlPatchOperationsBuilder();

}

Above code uses following generics:

P

the document patching instruction type

C

the patching instructions used as elements which build component created

E

the element type, defines what is the concrete type of XML elements used

N

the xml patch ops node type, defines what is the concrete type of XML patch ops node params

used by {@link XmlPatchOperationsBuilder}

XCAP Patch Builder

9

public P buildPatchComponent(String sel, String previousETag, String newETag, C[]

patchingInstructions) throws BuildPatchException;

Creates patch instruction for changes in particular document.

public P getBodyNotChangedPatchingInstruction() throws BuildPatchException;

Creates patch instruction indicating that document body has not changed. It is used to indicate

tag changes.

public XmlPatchOperationsBuilder<D,P, E, N> getXmlPatchOperationsBuilder();

Returns XML Patch instructions builder. Instance of this interface should be used to create

instructions to fed to above methods.

2.5. XCAP Patch Builder

XCAP Patch instruction builder is defined as follows:

public interface XcapDiffPatchBuilder<P, C, D, E, N> {

 public P buildPatch(String xcapRoot, C[] components)

 throws BuildPatchException;

 public AttributePatchComponentBuilder<C> getAttributePatchComponentBuilder();

 public ElementPatchComponentBuilder<C, E> getElementPatchComponentBuilder();

 public DocumentPatchComponentBuilder<C, D, E, N> getDocumentPatchComponentBuilder();

}

Above code uses following generics:

P

the patch type, defines what is the concrete type of finalized XCAP DIFF patch

C

the component type, defines what is the concrete type of each patch component, to be

aggregated in a XCAP DIFF patch

D

the document type, defines what is the concrete type of XML documents used

E

the element type, defines what is the concrete type of XML elements used

Chapter 2. Design Overview

10

N

the xml patch ops node type, defines what is the concrete type of XML patch ops node params

used by {@link XmlPatchOperationsBuilder}

public P buildPatch(String xcapRoot, C[] components) throws BuildPatchException;

Creates patch instruction from component passes. Components passed to this method are

genereated by interfaces retrieved by getter methods explaioned below.

public AttributePatchComponentBuilder<C> getAttributePatchComponentBuilder();

Retrieves Attribute Patch builder: Section 2.2, “XCAP Attribute Patch Builder”

public ElementPatchComponentBuilder<C, E> getElementPatchComponentBuilder();

Retrieves Element Patch builder: Section 2.3, “XCAP Element Patch Builder”

public DocumentPatchComponentBuilder<C, D, E, N> getDocumentPatchComponentBuilder();

Retrieves Document Patch builder: Section 2.4, “XCAP Document Patch Builder”

2.6. XCAP Patch Applier

XCAP Patch instruction applier is defined as follows:

public interface XcapDiffPatchApplier<P, D> {

 public void applyPatch(P patch, D document) throws ApplyPatchException;

}

Above code uses following generics:

P

the patch type, defines what is the concrete type of finalized XCAP DIFF patch

D

the document type, defines what is the concrete type of XML documents used

Applier has single method which applies patch generated to local copy of document to update

its content.

2.7. XCAP Diff Factory

Last element defined by xcap-diff library is XCAP Diff factory. Simple component which takes

care of initialization of all above elements. It is defined as follows:

XCAP Diff Factory

11

public interface XcapDiffFactory<P, C, D, E, N> {

 public static final String XCAP_DIFF_NAMESPACE_URI = "urn:ietf:params:xml:ns:xcap-diff";

 public XcapDiffPatchApplier<P, D> getPatchApplier();

 public XcapDiffPatchBuilder<P, C, D, E, N> getPatchBuilder();

}

Above code uses following generics:

P

the patch type, defines what is the concrete type of finalized XCAP DIFF patch

C

the component type, defines what is the concrete type of each patch component, to be

aggregated in a XCAP DIFF patch

D

the document type, defines what is the concrete type of XML documents used

E

the element type, defines what is the concrete type of XML elements used

N

the xml patch ops node type, defines what is the concrete type of XML patch ops node params

used by {@link XmlPatchOperationsBuilder}

12

Chapter 3.

13

Setup

3.1. Software Prerequisites

There are no specific software requirements that need to be met, other than required by specific

implementation of API . Currently following implementation exist:

DOM

It requires following libraries:

• Xerces

3.2. Mobicents Source Code

3.2.1. Release Source Code Building

1. Downloading the source code

Important

Subversion is used to manage its source code. Instructions for using

Subversion, including install, can be found at http://svnbook.red-bean.com

Use SVN to checkout a specific release source, the base URL is http://

mobicents.googlecode.com/svn/tags/protocols/xcap-diff, then add the specific release

version, lets consider 1.0.0.BETA1.

[usr]$ svn co http://mobicents.googlecode.com/svn/tags/protocols/xcap-diff/xcap-

diff-1.0.0.BETA1 xcap-diff-1.0.0.BETA1

2. Building the source code

Important

Maven 2.0.9 (or higher) is used to build the release. Instructions for using

Maven2, including install, can be found at http://maven.apache.org

Use Maven to build the binaries.

http://svnbook.red-bean.com
http://maven.apache.org

Chapter 3. Setup

14

 [usr]$ cd xcap-diff-1.0.0.BETA1

 [usr]$ mvn install

Once the process finishes you should have the binary jar files in the target directory of

module .

3.2.2. Development Trunk Source Building

Similar process as for Section 3.2.1, “Release Source Code Building”, the only change is the SVN

source code URL, which is http://mobicents.googlecode.com/svn/trunk/protocols/xcap-diff.

3.3. Configuration

There is no configuration required to use xcap-diff library.

Chapter 4.

15

Examples
Following examples are based on current, default DOM implementation of xcap-diff library.

However they are valid for any implementation honoring javadoc contracts.

4.1. Attribute Replace Patch

Example code assumes following:

• Client subscribed to document/element

• Attribute has been replaced in document or in child element to which client subscribed

 import org.mobicents.protocols.xcap.*; //imports api and default, dom implementation

 import org.w3c.dom.*; //import dom stuff

 DOMXcapDiffFactory xcapDiffFactory = new DOMXcapDiffFactory();

 DOMXcapDiffPatchBuilder xcapDiffPatchBuilder = xcapDiffFactory.getPatchBuilder();

 DOMDocumentPatchComponentBuilder documentPatchComponentBuilder =

 xcapDiffPatchBuilder.getDocumentPatchComponentBuilder();

 DOMXmlPatchOperationsBuilder xmlPatchOperationsBuilder =

 documentPatchComponentBuilder.getXmlPatchOperationsBuilder();

 //Note, no namespaces

 String xcapRoot = "http://localhost:8080/default"; //root of server

 String documentSelector = "tests/users/sip:joe@example.com/index";

 String attributeSelector = "house/room[id='main']/switch/@on"; //house status document?

 String attributeNewValue = "true";

 String oldETag = "3416134yyDFGA$v33@!";

 String newETag = "haha";

 Element attributeElement = xmlPatchOperationsBuilder

 .replaceAttribute(attributeSelector,attributeNewValue,null); //no namespaces

 Element documentElement = documentPatchComponentBuilder

 .buildPatchComponent(documentSelector,oldETag,newETag,

 new Element[]{attributeElement});

 Document xcapDiffDocument = xcapDiffPatchBuilder

 .buildPatch(xcapRoot,new Element[]{documentElement}); //xcap diff patch

Chapter 4. Examples

16

4.2. Attribute Add Patch

Example code assumes following:

• Client subscribed to document/element

• Attribute has been added in document or in child element to which client subscribed

 import org.mobicents.protocols.xcap.*; //imports api and default, dom implementation

 import org.w3c.dom.*; //import dom stuff

 DOMXcapDiffFactory xcapDiffFactory = new DOMXcapDiffFactory();

 DOMXcapDiffPatchBuilder xcapDiffPatchBuilder = xcapDiffFactory.getPatchBuilder();

 DOMDocumentPatchComponentBuilder documentPatchComponentBuilder =

 xcapDiffPatchBuilder.getDocumentPatchComponentBuilder();

 DOMXmlPatchOperationsBuilder xmlPatchOperationsBuilder =

 documentPatchComponentBuilder.getXmlPatchOperationsBuilder();

 //Note, no namespaces

 String xcapRoot = "http://localhost:8080/default"; //root of server

 String documentSelector = "tests/users/sip:joe@example.com/index";

 String nodeSelector = "house/room[id='main']/switch"; //house status document?

 String attributeName = "serial";

 String attributeNewValue = "GID-FH56-6235-ZXOP";

 String oldETag = "3416134yyDFGA$v33@!";

 String newETag = "haha";

 Element attributeElement = xmlPatchOperationsBuilder

 .addAttribute(nodeSelector,attributeName,attributeNewValue,null); //no namespaces

 Element documentElement = documentPatchComponentBuilder

 .buildPatchComponent(documentSelector,oldETag,newETag,

 new Element[]{attributeElement});

 Document xcapDiffDocument = xcapDiffPatchBuilder

 .buildPatch(xcapRoot,new Element[]{documentElement}); //xcap diff patch

Attribute Add Patch

17

4.3. Attribute Add Patch

Example code assumes following:

• Client subscribed to attribute

• Attribute has been added

 import org.mobicents.protocols.xcap.*; //imports api and default, dom implementation

 import org.w3c.dom.*; //import dom stuff

 DOMXcapDiffFactory xcapDiffFactory = new DOMXcapDiffFactory();

 DOMXcapDiffPatchBuilder xcapDiffPatchBuilder = xcapDiffFactory.getPatchBuilder();

 DOMAttributePatchComponentBuilder attributePatchComponentBuilder =

 xcapDiffPatchBuilder.getAttributePatchComponentBuilder();

 //Note, no namespaces

 String xcapRoot = "http://localhost:8080/default"; //root of server

 String documentSelector = "tests/users/sip:joe@example.com/index";

 String attributeSelector = "house/room[id='main']/switch/@serial"; //house status document?

 String attributeNewValue = "GID-FH56-6235-ZXOP";

 Element attributeElement = attributePatchComponentBuilder

 .buildPatchComponent(attributeSelector,attributeNewValue,null); //no namespaces

 Document xcapDiffDocument = xcapDiffPatchBuilder

 .buildPatch(xcapRoot,new Element[]{attributeElement}); //xcap diff patch

Note

Note difference between this code above and Section 4.2, “Attribute Add Patch”

Similar rules apply to element changes.

Chapter 4. Examples

18

4.4. Element Replace Patch

Example code assumes following:

• Client subscribed to document/element

• Attribute has been replaced in document or in child element to which client subscribed

 import org.mobicents.protocols.xcap.*; //imports api and default, dom implementation

 import org.w3c.dom.*; //import dom stuff

 DOMXcapDiffFactory xcapDiffFactory = new DOMXcapDiffFactory();

 DOMXcapDiffPatchBuilder xcapDiffPatchBuilder = xcapDiffFactory.getPatchBuilder();

 DOMDocumentPatchComponentBuilder documentPatchComponentBuilder =

 xcapDiffPatchBuilder.getDocumentPatchComponentBuilder();

 DOMXmlPatchOperationsBuilder xmlPatchOperationsBuilder =

 documentPatchComponentBuilder.getXmlPatchOperationsBuilder();

 //Note, no namespaces

 String xcapRoot = "http://localhost:8080/default"; //root of server

 String documentSelector = "tests/users/sip:joe@example.com/index";

 String nodeSelector = "house/room[id='main']/switch"; //house status document?

 Element elementNewValue =;

 String oldETag = "3416134yyDFGA$v33@!";

 String newETag = "haha";

 Element element = xmlPatchOperationsBuilder

 .replaceElement(nodeSelector,elementNewValue,null); //no namespaces

 Element documentElement = documentPatchComponentBuilder

 .buildPatchComponent(documentSelector,oldETag,newETag,

 new Element[]{element});

 Document xcapDiffDocument = xcapDiffPatchBuilder

 .buildPatch(xcapRoot,new Element[]{documentElement}); //xcap diff patch

XPath and Namespaces

19

4.5. XPath and Namespaces

The XPath expressions may include namespace prefixes to identify correct resource in document.

In such cases XCAP Diff requires namespace declaration its supposed to include in patch. This

is required so patch consumers can properly resolve prefixes used in XPath, in order to patch

locate target resource in document.

Below is example of patch generation with namespaces in XPath. Note that is similar to ???

 import org.mobicents.protocols.xcap.*; //imports api and default, dom implementation

 import org.w3c.dom.*; //import dom stuff

 DOMXcapDiffFactory xcapDiffFactory = new DOMXcapDiffFactory();

 DOMXcapDiffPatchBuilder xcapDiffPatchBuilder = xcapDiffFactory.getPatchBuilder();

 DOMDocumentPatchComponentBuilder documentPatchComponentBuilder =

 xcapDiffPatchBuilder.getDocumentPatchComponentBuilder();

 DOMXmlPatchOperationsBuilder xmlPatchOperationsBuilder =

 documentPatchComponentBuilder.getXmlPatchOperationsBuilder();

 //Note, no namespaces

 String xcapRoot = "http://localhost:8080/default"; //root of server

 String documentSelector = "tests/users/sip:joe@example.com/index";

 String attributeSelector = "p:house/room[id='main']/e:switch/@on"; //house status

 document?

 String attributeNewValue = "true";

 String oldETag = "3416134yyDFGA$v33@!";

 String newETag = "haha";

 Map<String,String> nameSpaces = new HashMap<String,String>();

 nameSpaces.put("e","http://engineer.org/grid/electrical");

 nameSpaces.put("p","http://engineer.org/ownership/private");

 Element attributeElement = xmlPatchOperationsBuilder

 .replaceAttribute(attributeSelector,attributeNewValue,nameSpaces); //no namespaces

 Element documentElement = documentPatchComponentBuilder

 .buildPatchComponent(documentSelector,oldETag,newETag,

 new Element[]{attributeElement});

 Document xcapDiffDocument = xcapDiffPatchBuilder

 .buildPatch(xcapRoot,new Element[]{documentElement}); //xcap diff patch

Chapter 4. Examples

20

21

Appendix A. Revision History
Revision History

Revision 1.0 Fri June 30 2011 BartoszBaranowski

Creation of the Mobicents xcap-diff Protocol User Guide.

22

23

Index
F
feedback, viii

24

	Mobicents xcap-diff Protocol User Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. Provide feedback to the authors!

	Chapter 1. Introduction to xcap-diff Protocol
	Chapter 2. Design Overview
	2.1. XML Patch Instruction Builder
	2.2. XCAP Attribute Patch Builder
	2.3. XCAP Element Patch Builder
	2.4. XCAP Document Patch Builder
	2.5. XCAP Patch Builder
	2.6. XCAP Patch Applier
	2.7. XCAP Diff Factory

	Chapter 3. Setup
	3.1. Software Prerequisites
	3.2. Mobicents Source Code
	3.2.1. Release Source Code Building
	3.2.2. Development Trunk Source Building

	3.3. Configuration

	Chapter 4. Examples
	4.1. Attribute Replace Patch
	4.2. Attribute Add Patch
	4.3. Attribute Add Patch
	4.4. Element Replace Patch
	4.5. XPath and Namespaces

	Appendix A. Revision History
	Index

