
Mobicents EclipSLEE Plugin User Guide

by Alexandre Mendonça

iii

Preface ... v

1. Document Conventions .. v

1.1. Typographic Conventions .. v

1.2. Pull-quote Conventions .. vii

1.3. Notes and Warnings .. vii

2. Provide feedback to the authors! .. viii

1. Introduction to Mobicents JAIN SLEE Eclipse ... 1

2. Installing Mobicents JAIN SLEE .. 3

2.1. Pre-Install Requirements and Prerequisites .. 3

2.1.1. Hardware Requirements ... 3

2.1.2. Software Prerequisites .. 3

2.2. Install Alternatives ... 3

2.2.1. Update Site ... 3

2.2.2. Manually .. 4

2.2.3. Nightly Builds Update Site .. 4

2.3. Uninstall Mobicents EclipSLEE .. 4

3. Creating and Managing a JAIN SLEE Project .. 7

3.1. Creating a JAIN SLEE Project ... 7

3.2. Managing Project Modules .. 11

3.2.1. Adding New Modules ... 11

3.2.2. Editing Existing Modules ... 13

3.2.3. Removing Existing Modules .. 15

3.3. Managing Project Dependencies .. 17

3.3.1. Adding a New Maven Dependency .. 17

3.3.2. Removing a Maven Dependency ... 20

4. Building JAIN SLEE Events ... 23

4.1. Creating a JAIN SLEE Event ... 23

4.2. Editing a JAIN SLEE Event ... 29

4.2.1. Edit Event Identity .. 31

4.3. Deleting a JAIN SLEE Event ... 32

5. Building JAIN SLEE Profile Specifications .. 35

5.1. Creating a JAIN SLEE Profile Specification .. 35

5.2. Editing a JAIN SLEE Profile Specification ... 42

5.3. Deleting a JAIN SLEE Profile Specification ... 42

6. Building JAIN SLEE Service Building Block (SBBs) .. 43

6.1. Creating a JAIN SLEE Service Building Block (SBB) ... 43

6.2. Editing a JAIN SLEE Service Building Block (SBB) ... 62

6.2.1. Edit SBB Identity .. 64

6.2.2. Edit SBB Classes ... 65

6.2.3. Edit SBB CMP Fields ... 66

6.2.4. Edit SBB Usage Parameters ... 67

6.2.5. Edit SBB Events .. 68

6.2.6. Edit SBB Profile Specifications .. 69

6.2.7. Edit SBB Child Relations .. 70

Mobicents EclipSLEE Plugin Us...

iv

6.2.8. Edit SBB Resource Adaptor Type Bindings .. 71

6.2.9. Edit SBB Environment Entries ... 72

6.3. Deleting a JAIN SLEE Service Building Block (SBB) ... 73

7. Building JAIN SLEE Services .. 75

7.1. Creating a JAIN SLEE Service .. 75

7.2. Editing a JAIN SLEE Service ... 80

7.2.1. Edit Service Identity ... 81

7.2.2. Edit Service Root SBB ... 82

7.3. Deleting a JAIN SLEE Service ... 83

8. Building JAIN SLEE Resource Adaptor Types ... 85

8.1. Creating a JAIN SLEE Resource Adaptor Type .. 85

8.2. Editing a JAIN SLEE Resource Adaptor Type ... 93

8.2.1. Edit RA Type Identity ... 95

8.2.2. Edit RA Type Events .. 96

8.2.3. Edit RA Type Activity Types ... 97

8.3. Deleting a JAIN SLEE Resource Adaptor Type ... 98

9. Building JAIN SLEE Resource Adaptors ... 101

9.1. Creating a JAIN SLEE Resource Adaptor ... 101

9.2. Editing a JAIN SLEE Resource Adaptor ... 109

9.2.1. Edit RA Identity .. 111

9.2.2. Edit RA Resource Adaptor Types .. 112

9.2.3. Edit RA Config Properties ... 113

9.3. Deleting a JAIN SLEE Resource Adaptor ... 114

10. Creating a JAIN SLEE Deployable Unit .. 117

11. Configuring Mobicents ElipSLEE ... 119

11.1. General Configuration .. 119

11.2. Component Templates Configuration .. 119

11.2.1. Add a New Component Template .. 119

11.2.2. Editing a Component Template ... 120

11.2.3. Removing a Component Template ... 120

A. Java Development Kit (JDK): Installing, Configuring and Running 121

B. Setting the JBOSS_HOME Environment Variable .. 125

C. Revision History .. 129

Index ... 131

v

Preface

1. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention

to specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts [https://

fedorahosted.org/liberation-fonts/] set. The Liberation Fonts set is also used in HTML editions if

the set is installed on your system. If not, alternative but equivalent typefaces are displayed. Note:

Red Hat Enterprise Linux 5 and later includes the Liberation Fonts set by default.

1.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These

conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to

highlight key caps and key-combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current

working directory, enter the cat my_next_bestselling_novel command at the

shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a key cap, all presented in Mono-spaced

Bold and all distinguishable thanks to context.

Key-combinations can be distinguished from key caps by the hyphen connecting each part of a

key-combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F1 to switch to the first virtual terminal. Press Ctrl+Alt+F7 to

return to your X-Windows session.

The first sentence highlights the particular key cap to press. The second highlights two sets of

three key caps, each set pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values

mentioned within a paragraph will be presented as above, in Mono-spaced Bold. For example:

File-related classes include filesystem for file systems, file for files, and dir

for directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialogue

box text; labelled buttons; check-box and radio button labels; menu titles and sub-menu titles.

For example:

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

vi

Choose System > Preferences > Mouse from the main menu bar to launch

Mouse Preferences. In the Buttons tab, click the Left-handed mouse check

box and click Close to switch the primary mouse button from the left to the right

(making the mouse suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications >

Accessories > Character Map from the main menu bar. Next, choose Search

> Find from the Character Map menu bar, type the name of the character in the

Search field and click Next. The character you sought will be highlighted in the

Character Table. Double-click this highlighted character to place it in the Text

to copy field and then click the Copy button. Now switch back to your document

and choose Edit > Paste from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-

specific menu names; and buttons and text found within a GUI interface, all presented in

Proportional Bold and all distinguishable by context.

Note the > shorthand used to indicate traversal through a menu and its sub-menus. This is to

avoid the difficult-to-follow 'Select Mouse from the Preferences sub-menu in the System menu

of the main menu bar' approach.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether Mono-spaced Bold or Proportional Bold, the addition of Italics indicates replaceable or

variable text. Italics denotes text you do not input literally or displayed text that changes depending

on circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name

at a shell prompt. If the remote machine is example.com and your username on

that machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file

system. For example, to remount the /home file system, the command is mount

-o remount /home.

To see the version of a currently installed package, use the rpm -q package

command. It will return a result as follows: package-version-release.

Note the words in bold italics above username, domain.name, file-system, package, version and

release. Each word is a placeholder, either for text you enter when issuing a command or for text

displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new

and important term. For example:

When the Apache HTTP Server accepts requests, it dispatches child processes

or threads to handle them. This group of child processes or threads is known as

Pull-quote Conventions

vii

a server-pool. Under Apache HTTP Server 2.0, the responsibility for creating and

maintaining these server-pools has been abstracted to a group of modules called

Multi-Processing Modules (MPMs). Unlike other modules, only one module from

the MPM group can be loaded by the Apache HTTP Server.

1.2. Pull-quote Conventions

Two, commonly multi-line, data types are set off visually from the surrounding text.

Output sent to a terminal is set in Mono-spaced Roman and presented thus:

books Desktop documentation drafts mss photos stuff svn

books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in Mono-spaced Roman but are presented and highlighted as

follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient

{

 public static void main(String args[])

 throws Exception

 {

 InitialContext iniCtx = new InitialContext();

 Object ref = iniCtx.lookup("EchoBean");

 EchoHome home = (EchoHome) ref;

 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));

 }

}

1.3. Notes and Warnings

Finally, we use three visual styles to draw attention to information that might otherwise be

overlooked.

Preface

viii

Note

A note is a tip or shortcut or alternative approach to the task at hand. Ignoring a

note should have no negative consequences, but you might miss out on a trick that

makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that

only apply to the current session, or services that need restarting before an update

will apply. Ignoring Important boxes won't cause data loss but may cause irritation

and frustration.

Warning

A Warning should not be ignored. Ignoring warnings will most likely cause data

loss.

2. Provide feedback to the authors!

If you find a typographical error in this manual, or if you have thought of a way to make this

manual better, we would love to hear from you! Please submit a report in the Issue Tracker

[${THIS.ISSUE_TRACKER_URL}], against the product Mobicents JAIN SLEE, or contact the

authors.

When submitting a bug report, be sure to mention the manual's identifier:

JAIN_SLEE_User_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when

describing it. If you have found an error, please include the section number and some of the

surrounding text so we can find it easily.

${THIS.ISSUE_TRACKER_URL}
${THIS.ISSUE_TRACKER_URL}

Chapter 1.

1

Introduction to Mobicents JAIN

SLEE Eclipse
The JAIN SLEE Eclipse Plug-in, EclipSLEE, is designed to help in the creation of the following

JAIN SLEE components:

• Events

• Service Building Blocks (SBBs)

• Profile Specifications

• Resource Adaptor Types

• Resource Adaptors

• Service XML Descriptors

• Deployable Units

With this plug-in developers can construct complete services easily and quickly. The plug-in takes

care of generating the correct Maven 2 project structure, ensuring that XML descriptors are correct,

as well as creating skeleton Java classes for developers to add service logic to.

2

Chapter 2.

3

Installing Mobicents JAIN SLEE

2.1. Pre-Install Requirements and Prerequisites

Ensure that the following requirements have been met before continuing with the install.

2.1.1. Hardware Requirements

Anything Eclipse 3.x Itself Will Run On

The Mobicents EclipSLEE plugin will run inside Eclipse, having the same requirements.

2.1.2. Software Prerequisites

JDK 5 or Higher

A working installation of the Java Development Kit (JDK) version 5 or higher is required in

order to run the Mobicents EclipSLEE Plugin.

For instructions on how to install the JDK, refer to Appendix A, Java Development Kit (JDK):

Installing, Configuring and Running.

Eclipse 3.7+

A working installation of the Eclipse platform version 3.7 (Indigo) or higher is required in order

to run the Mobicents EclipSLEE plugin.

For instructions on how to install Eclipse, refer to Where do I get and install Eclipse? [http://

wiki.eclipse.org/FAQ_Where_do_I_get_and_install_Eclipse%3F].

M2Eclipse Plugin

For performing maven actions, an installation of the Maven Integration for Eclipse plugin (m2e)

version 1.0.0 or higher is required by the Mobicents EclipSLEE plugin.

For instructions on how to install m2e, refer to Installing m2e [http://marketplace.eclipse.org/

content/maven-integration-eclipse].

2.2. Install Alternatives

Using Update Site

The plugin can be easily installed and updated by using the Mobicents EclipSLEE Update Site.

Manually

As an alternative to the update site, it is possible to download the plugin and install it manually.

2.2.1. Update Site

Set up the Update Site following these steps:

http://wiki.eclipse.org/FAQ_Where_do_I_get_and_install_Eclipse%3F
http://wiki.eclipse.org/FAQ_Where_do_I_get_and_install_Eclipse%3F
http://wiki.eclipse.org/FAQ_Where_do_I_get_and_install_Eclipse%3F
http://marketplace.eclipse.org/content/maven-integration-eclipse
http://marketplace.eclipse.org/content/maven-integration-eclipse
http://marketplace.eclipse.org/content/maven-integration-eclipse

Chapter 2. Installing Mobicen...

4

1. Open Eclipse

2. Go to Help → Install New Software...

3. Click Add... and enter name EclipSLEE and URL http://mobicents.googlecode.com/svn/

downloads/eclipse-update-site/

4. Select the appropriate EclipSLEE version, click Next and follow the instructions in the Eclipse

Wizard

5. Allow Eclipse to restart

2.2.2. Manually

1. Download the latest EclipSLEE JAR file from here [http://mobicents.googlecode.com/svn/

downloads/eclipse-update-site/plugins/]

2. Copy the JAR file to ECLIPSE_HOME/plugins

3. (Re)Start Eclipse

2.2.3. Nightly Builds Update Site

We provide nightly builds for the early adopters. Set up the Update Site following these steps:

1. Open Eclipse

2. Go to Help → Install New Software...

3. Click Add... and enter name EclipSLEE and URL http://hudson.jboss.org/hudson/view/

Mobicents/job/Mobicents-EclipSLEE/lastSuccessfulBuild/artifact/

4. Select the appropriate EclipSLEE version, click Next and follow the instructions in the Eclipse

Wizard

5. Allow Eclipse to restart

2.3. Uninstall Mobicents EclipSLEE

To uninstall follow these steps:

1. Open Eclipse

2. Go to Help → Install New Software...

3. Click on What's already installed

4. Locate EclipSLEE plugin and click Uninstall

http://mobicents.googlecode.com/svn/downloads/eclipse-update-site/plugins/
http://mobicents.googlecode.com/svn/downloads/eclipse-update-site/plugins/
http://mobicents.googlecode.com/svn/downloads/eclipse-update-site/plugins/

Uninstall Mobicents EclipSLEE

5

5. Restart Eclipse

6

Chapter 3.

7

Creating and Managing a JAIN SLEE

Project

3.1. Creating a JAIN SLEE Project

It is necessary to create a JAIN SLEE project before JAIN SLEE components may be created.

This can be done from the workbench by selecting File → New → Project... as illustrated in the

following figure.

Figure 3.1. Selecting "New Project..." in Eclipse

This will create a New Project dialog as shown below. From this dialog expand JAIN SLEE, then

select the revealed JAIN SLEE Project. Click Next to proceed to chosing a name and location

for the new project.

Chapter 3. Creating and Manag...

8

Figure 3.2. Choosing a JAIN SLEE Project

Give the project a name and if desired specify a non-default location. For the majority of people

the default location will be fine; this is the current workspace. The following image shows a project

with the name of 'MobicentsDemoProject' in the default location. Click Next to proceed to module

selection or Finish to go with default (SBBs and Deployable Unit).

Creating a JAIN SLEE Project

9

Figure 3.3. Choosing Name and Location of the JAIN SLEE Project

Choose the desired project modules to be created, from the list, as shown below. The correct

Maven modules will be created according to the selection, as well as the Deployable Unit

descriptor. You can also opt for using the Mobicents JAIN SLEE 1.1 specific extensions. You can

find more information about these extensions on the Mobicents JAIN SLEE User Guide.

Chapter 3. Creating and Manag...

10

Figure 3.4. Choosing Name and Location of the JAIN SLEE Project

Click on Finish and the project with all the modules will be created in the selected location.

The following image depicts a workspace with a newly created JAIN SLEE project with the project

folder, "MobicentsDemoProject", expanded.

Managing Project Modules

11

Figure 3.5. Newly created project in workspace

3.2. Managing Project Modules

It is possible to manage (ie, add, modify and remove) modules once the project is created.

3.2.1. Adding New Modules

Adding a new module can be done from the workbench by right-clicking the Project element

and selecting Add Module → <desired module type> as illustrated in the following figure, for

a Resource Adaptor Type.

Chapter 3. Creating and Manag...

12

Figure 3.6. Selecting "Add Module" in EclipSLEE

This will create a New Module dialog as shown below. From this dialog it's possible to name the

new module and select from which other existing modules this one will depend on (Dependency)

and which ones will depend on the new one (Dependant).

Deployable Unit as Dependant

The deployable unit (du) module must always be selected as dependant if the new

module should be included in the maven generated Deployable Unit.

Module Name Suffix

The module name will always be suffixed with "-<component_type>" (eg: Using

Name "custom" in example will result in "custom-ratype" module) so, avoid

including it in the name.

Editing Existing Modules

13

Figure 3.7. Choosing a JAIN SLEE Project

Click on Finish and the new module will be created and dependencies in other modules will be

updated to include it.

3.2.2. Editing Existing Modules

Editing a new module can be done from the workbench by right-clicking the Project element

and selecting Edit Module → <desired module type> as illustrated in the following figure, for

a Resource Adaptor Type.

Chapter 3. Creating and Manag...

14

Figure 3.8. Selecting "Edit Module" in EclipSLEE

This will present a dialog similar to the New Module dialog. From this dialog it's possible to modify

from which other existing modules this one will depend on (Dependency) and which ones will

depend on this one (Dependant).

Deployable Unit as Dependant

The deployable unit (du) module must always be selected as dependant if the new

module should be included in the maven generated Deployable Unit.

Removing Existing Modules

15

Figure 3.9. Editing a JAIN SLEE Module

When done with the desired changes, click on Finish and the affected modules will be updated.

3.2.3. Removing Existing Modules

Removing an existing module can be done from the workbench by right-clicking the Project

element and selecting Delete Module → <desired module> as illustrated in the following figure,

for a Resource Adaptor Type.

Chapter 3. Creating and Manag...

16

Figure 3.10. Selecting "Delete Module" in EclipSLEE

This will present a confirmation dialog to confirm the deletion of the module.

Impossible to undo this operation!

Deleting a module is an irreversible operation, so it should be used carefully.

Managing Project Dependencies

17

Figure 3.11. Module deletion confirmation Dialog

Click on Yes to delete the module and update references in other modules. Clicking No cancels

the operation without performing any action.

3.3. Managing Project Dependencies

Maven dependencies for each module can be added or removed using EclipSLEE. After these

dependencies are added, the classpath is updated by running the Maven mobicents:eclipse target.

The entries in the classpath are not only used for the usual project classpath but also for allowing

the plugin to find available JAIN SLEE Components for the wizards, to be used in the project, such

as Events, RA Types and SBBs relative to the platform Resource Adaptors and Enablers.

3.3.1. Adding a New Maven Dependency

Adding a new maven dependency can be done from the workbench by right-clicking the desired

module pom file and selecting Add Maven Dependency as illustrated in the following figure.

Chapter 3. Creating and Manag...

18

Figure 3.12. Selecting "Add Maven Dependency" in EclipSLEE

This will create a New Maven Dependency dialog as shown below. From this dialog it's possible

to define the dependency Group ID, Artifact ID and Version, as well as the scope with which the

dependency should be added (defaulting to "compile"). The Add to classpath? option adds the

new maven dependency to the project classpath, considering "M2_REPO" variable is set.

Adding a New Maven Dependency

19

Defining M2_REPO variable in Eclipse

Under Eclipse preferences, go to Java → Build Path → Classpath Variables.

Click on New... and fill the values: Name as M2_REPO and Path indicating the path to

your Maven local repository (usually located under <user-home>/.m2/repository).

Click OK to save and close the dialog, and OK again to close the preferences

window.

Figure 3.13. Defining a new Maven dependency in EclipSLEE

You can also use the Component drop-down menu to pick the component Group Id, Artifact

and Version from the provided templates. By default it contains the components shipped with

the latest Mobicents JAIN SLEE release but it can be customized in the Plugin preferences. See

Section 11.2, “Component Templates Configuration” for more information.

Click on Finish and the new dependency will be added to the module's pom file and, if selected,

the classpath updated with the new entry.

Chapter 3. Creating and Manag...

20

3.3.2. Removing a Maven Dependency

Removing a Maven dependency can be done from the workbench by right-clicking the desired

module pom file and selecting Remove Maven Dependency... → <desired dependency> as

illustrated in the following figure.

Figure 3.14. Selecting "Remove Maven Dependency..." in EclipSLEE

This will present a confirmation dialog to confirm the removal of the maven dependency.

Removing a Maven Dependency

21

Figure 3.15. Maven Dependency removal confirmation Dialog

Click on Yes to remove the maven dependency from the module and, if needed, update the

classpath. Clicking No cancels the operation without performing any action.

22

Chapter 4.

23

Building JAIN SLEE Events
EclipSLEE provides means to create, edit and delete JAIN SLEE Events.

4.1. Creating a JAIN SLEE Event

To create a component it may be easier (but not mandatory) to first create a package to contain

it. This package should be created as a child of the <event-module>/src/main/java folder. To do

this right-click on the src folder and select New → Package. Give the new package a name using

the popup dialog (shown below).

Figure 4.1. Creating a new Package in Eclipse

In case a new package is not created at this point, it can still be created in the Component wizard,

but no validation is performed at that time, regarding the package naming conventions.

To create a new JAIN SLEE Event, right-click on the created package (or the module entry if the

package is not yet created) and choose New → Other ... as shown below.

Chapter 4. Building JAIN SLEE...

24

Figure 4.2. Creating a new JAIN SLEE Component in EclipSLEE

A dialog should appear. Expand the JAIN SLEE item and choose JAIN SLEE Event. The dialog

should now look like the following:

Creating a JAIN SLEE Event

25

Figure 4.3. Creating a new JAIN SLEE Event in EclipSLEE

Click Next to get the following dialog:

Chapter 4. Building JAIN SLEE...

26

Figure 4.4. Selecting the package and name for a new JAIN SLEE Event in

EclipSLEE

The source folder and package dialogs will be completed if New → Other ... has been selected

from right-clicking on a package. Otherwise it may need to be chosen by selecting Browse... and

selecting the desired locations or typing it's name in the appropriate field and it will be created

in the end.

Name the event; the name must end with "Event.java". Then click Next to go to the component

identity dialog, pictured below:

Creating a JAIN SLEE Event

27

Figure 4.5. JAIN SLEE Component Identity dialog in EclipSLEE

The Name, Vendor and Version fields are mandatory and are used by the SLEE to identify the

event. The description field is optional, but strongly recommended to be completed to allow easy

identification of the event in future. Click Next to select the Library References for this event:

After completing these fields click Next to specify the event Libraries.

Chapter 4. Building JAIN SLEE...

28

Figure 4.6. JAIN SLEE Event Libraries dialog in EclipSLEE

This dialog allows to select which JAIN SLEE Libraries this event should reference in it's descriptor.

Select them from the top list (Available Libraries) by clicking Select Library. To remove them,

select them from the bottom list (Selected Libraries) and click Deselect Library.

When done click Finish to create the event.

The event Java file, TestEvent.java is created in the specified package and opened for editing

in the workspace. The event-jar.xml deployment descriptor is updated to reflect the new event

or created if not already present. The resulting workspace can be seen below.

Editing a JAIN SLEE Event

29

Figure 4.7. JAIN SLEE Event created in workspace using EclipSLEE

4.2. Editing a JAIN SLEE Event

It is possible with EclipSLEE to edit existing components. When right-clicking in one of the JAIN

SLEE Event classes a similar menu should be shown:

Chapter 4. Building JAIN SLEE...

30

Figure 4.8. Editing a JAIN SLEE Event through class file

It is also possible to edit by right-clicking on the event-jar.xml descriptor. In that case a sub-menu

allowing to pick which Event to edit is shown:

Edit Event Identity

31

Figure 4.9. Editing JAIN SLEE Events through XML descriptor

After selecting the desired event, the menu shown should be similar to the one presented when

using the class file to edit.

The following actions are available for a JAIN SLEE Event:

4.2.1. Edit Event Identity

With this operation it is possible to change the JAIN SLEE Event identity (name, vendor, version)

and it's description. The following dialog is presented:

Chapter 4. Building JAIN SLEE...

32

Figure 4.10. Editing JAIN SLEE Event Identity

Other components are not updated!

EclipSLEE does not automatically update other component descriptors in order to

reflect such identity change, so it should be made manually.

4.3. Deleting a JAIN SLEE Event

It is possible with EclipSLEE to delete existing components. Right-clicking in one of the JAIN SLEE

Event classes or XML descriptor file (see Section 4.2, “Editing a JAIN SLEE Event”) and selecting

the Delete option.

A confirmation dialog similar to the following should be presented:

Deleting a JAIN SLEE Event

33

Figure 4.11. Deleting a JAIN SLEE Event confirmation dialog

Impossible to undo this operation!

Deleting a component is an irreversible operation, so it should be used carefully.

34

Chapter 5.

35

Building JAIN SLEE Profile

Specifications
EclipSLEE provides means to create, edit and delete JAIN SLEE Profile Specifications.

5.1. Creating a JAIN SLEE Profile Specification

To create a component it may be easier (but not mandatory) to first create a package to contain

it. This package should be created as a child of the <profile-spec-module>/src/main/java folder.

To do this right-click on the src folder and select New → Package. Give the new package a name

using the popup dialog (shown below).

Figure 5.1. Creating a new Package in Eclipse

In case a new package is not created at this point, it can still be created in the Component wizard,

but no validation is performed at that time, regarding the package naming conventions.

To create a new JAIN SLEE Profile Specification, right-click on the created package (or the module

entry if the package is not yet created) and choose New → Other ... as shown below.

Chapter 5. Building JAIN SLEE...

36

Figure 5.2. Creating a new JAIN SLEE Component in EclipSLEE

A dialog should appear. Expand the JAIN SLEE item and choose JAIN SLEE Profile

Specification. The dialog should now look like the following:

Creating a JAIN SLEE Profile Specification

37

Figure 5.3. Creating a new JAIN SLEE Profile Specification in EclipSLEE

Click Next to get the following dialog:

Chapter 5. Building JAIN SLEE...

38

Figure 5.4. Selecting the package and name for a new JAIN SLEE Profile

Specification in EclipSLEE

The source folder and package dialogs will be completed if New → Other ... has been selected

from right-clicking on a package. Otherwise it may need to be chosen by selecting Browse... and

selecting the desired locations or typing it's name in the appropriate field and it will be created

in the end.

Name the Profile Specification; the name must end with "ProfileCMP.java". Then click Next to

go to the component identity dialog, pictured below:

Creating a JAIN SLEE Profile Specification

39

Figure 5.5. JAIN SLEE Profile Specification Identity dialog in EclipSLEE

The Name, Vendor and Version fields are mandatory and are used by the SLEE to identify the

profile specification. The description field is optional, but strongly recommended to be completed

to allow easy identification of the profile specification in future.

After completing these fields click Next to specify the profile specification's Libraries.

Chapter 5. Building JAIN SLEE...

40

Figure 5.6. JAIN SLEE Profile Spec Libraries dialog in EclipSLEE

This dialog allows to select which JAIN SLEE Libraries this profile specification should reference

in it's descriptor. Select them from the top list (Available Libraries) by clicking Select Library. To

remove them, select them from the bottom list (Selected Libraries) and click Deselect Library.

When done click Next to define the profile specification's CMP fields.

Creating a JAIN SLEE Profile Specification

41

Figure 5.7. JAIN SLEE Profile Specification CMP Fields definition in

EclipSLEE

To add a CMP field click on Add. This will add a blank row to the table. To edit the name of

the field click on the row in the Name column, enter the name and press enter. The type can be

edited in the same way. The visible field controls visibility to management clients. The indexed

field specifies whether or not the CMP field is an indexed attribute. A yes value in the unique

field indicates that the value stored in this field must be unique across all profiles of that profile

specification. Please read the JAIN SLEE specification for further details on these parameters.

If the profile specification requires a custom abstract management class enable Create abstract

management class.

Click Finish to create the profile specification.

The profile CMP Java file, MobicentsDemoProfileCMP.java is created in the specified package

and opened for editing in the workspace. Management interface and abstract management class

Chapter 5. Building JAIN SLEE...

42

(if selected) are also created in the selected package. The profile-spec-jar.xml deployment

descriptor is updated to reflect the new profile specification or created if not already present. The

resulting workspace can be seen below.

Figure 5.8. JAIN SLEE Profile Specification created in workspace using

EclipSLEE

5.2. Editing a JAIN SLEE Profile Specification

This operation is not currently supported.

5.3. Deleting a JAIN SLEE Profile Specification

This operation is not currently supported.

Chapter 6.

43

Building JAIN SLEE Service Building

Block (SBBs)
EclipSLEE provides means to create, edit and delete JAIN SLEE Service Building Blocks.

6.1. Creating a JAIN SLEE Service Building Block (SBB)

To create a component it may be easier (but not mandatory) to first create a package to contain

it. This package should be created as a child of the <sbb-module>/src/main/java folder. To do this

right-click on the src folder and select New → Package. Give the new package a name using the

popup dialog (shown below).

Figure 6.1. Creating a new Package in Eclipse

In case a new package is not created at this point, it can still be created in the Component wizard,

but no validation is performed at that time, regarding the package naming conventions.

To create a new JAIN SLEE SBB, right-click on the created package (or the module entry if the

package is not yet created) and choose New → Other ... as shown below.

Chapter 6. Building JAIN SLEE...

44

Figure 6.2. Creating a new JAIN SLEE Component in EclipSLEE

A dialog should appear. Expand the JAIN SLEE item and choose JAIN SLEE Service Building

Block (SBB). The dialog should now look like the following:

Creating a JAIN SLEE Service Building Block (SBB)

45

Figure 6.3. Creating a new JAIN SLEE SBB in EclipSLEE

Click Next to get the following dialog:

Chapter 6. Building JAIN SLEE...

46

Figure 6.4. Selecting the package and name for a new JAIN SLEE SBB in

EclipSLEE

The source folder and package dialogs will be completed if New → Other ... has been selected

from right-clicking on a package. Otherwise it may need to be chosen by selecting Browse... and

selecting the desired locations or typing it's name in the appropriate field and it will be created

in the end.

Name the SBB; the name must end with "Sbb.java". Then click Next to go to the component

identity dialog, pictured below:

Creating a JAIN SLEE Service Building Block (SBB)

47

Figure 6.5. JAIN SLEE Component Identity dialog in EclipSLEE

The Name, Vendor and Version fields are mandatory and are used by the SLEE to identify the

SBB. The description field is optional, but strongly recommended to be completed to allow easy

identification of the SBB in future.

After completing these fields click Next to specify the SBB's Libraries.

Chapter 6. Building JAIN SLEE...

48

Figure 6.6. JAIN SLEE SBB Libraries dialog in EclipSLEE

This dialog allows to select which JAIN SLEE Libraries this SBB should reference in it's descriptor.

Select them from the top list (Available Libraries) by clicking Select Library. To remove them,

select them from the bottom list (Selected Libraries) and click Deselect Library.

When done, click Next to specify the SBB's class files.

Creating a JAIN SLEE Service Building Block (SBB)

49

Figure 6.7. JAIN SLEE SBB companion interfaces selection in EclipSLEE

This dialog allows you to specify that a custom SBB Local Object and/or Activity Context Interface

is required for this SBB. Select the required interfaces, then click Next to edit the SBB's CMP fields.

Chapter 6. Building JAIN SLEE...

50

Figure 6.8. JAIN SLEE SBB CMP Fields definition in EclipSLEE

Here, the SBB's CMP fields can be set. Add a CMP field by clicking on Add. A field can be removed

by selecting it in the table and clicking Remove. To modify a CMP field, click on the Modify button

next to it in the table.

Creating a JAIN SLEE Service Building Block (SBB)

51

Figure 6.9. JAIN SLEE SBB CMP Field configuration in EclipSLEE

Name the CMP field in the Name text field. A CMP field can either be a standard Java object,

primitive or an SbbLocalObject. Select the statement that represents the data type to be stored

in the field.

A standard Java object or primitive type requires the fully qualified type name to be entered into

the Type text field. For example, java.lang.String.

A CMP field that stores an SbbLocalObject may only store SBBs of a specific identity. The drop

down SBB box will contain all the SBBs that the EclipSLEE plugin was able to find. Choose the

one that should be stored in the CMP field, and give it a Scoped Name. This is a variable name

and should be a valid Java variable name, and should begin with a lowercase letter.

If an SBB needs to store an SBB of its own type in a CMP field, then the SBB must be created

without that CMP field, and the CMP field added later.

Once the CMP field is correct click OK and the wizard CMP page will be updated with the new data.

Repeat until all CMP fields are created, then click Next to edit the SBB's usage parameters:

Chapter 6. Building JAIN SLEE...

52

Figure 6.10. JAIN SLEE SBB Usage Parameters definition in EclipSLEE

Check Create SBB usage interface if you require the SBB usage interface. Then add usage

parameters by clicking Add and modifying the values in the table. Two types of parameter are

available: increment and sample.

Click Next to move to the event selection dialog, shown below:

Creating a JAIN SLEE Service Building Block (SBB)

53

Figure 6.11. JAIN SLEE SBB Events selection in EclipSLEE

The event selection dialog contains a list of all the events the plugin could find in your project. This

includes any events that were installed as external components.

Available Components Missing?

At the moment, in order for the available components to be listed in the wizard,

they need to be part of the classpath. For instance if you want to use SIP11 Events

for your project, you will need to add it as a Maven Dependency and be part of

classpath first. Refer to Section 3.3.1, “Adding a New Maven Dependency” on how

to do it.

For each event that you would like your SBB to fire or receive:

1. Select the event in the available events table.

Chapter 6. Building JAIN SLEE...

54

2. Click Select Event; the event will move to the selected events table.

3. Click Modify... for that event in the selected events table. This will create the following dialog.

Figure 6.12. JAIN SLEE SBB Event configuration in EclipSLEE

4. Review the Scoped Name and change it if desired.

5. Set the event direction.

6. If the event direction is Receive or FireAndReceive check This is an initial event if it should

be an initial event for a service.

7. If this is an initial event, choose one or more initial event selectors.

8. Click OK

When all events have been configured the dialog may look something like this:

Creating a JAIN SLEE Service Building Block (SBB)

55

Figure 6.13. JAIN SLEE SBB Events configured in EclipSLEE

Click Next to define the SBB's profile specifications.

Chapter 6. Building JAIN SLEE...

56

Figure 6.14. JAIN SLEE SBB Profile Specifications selection in EclipSLEE

The profile selection dialog contains a list of all the profiles the plugin could find in your project.

This includes any profiles that were installed as external components. If your custom profiles are

not listed, verify that they have been compiled and the "jars" folder refreshed.

Available Components Missing?

At the moment, in order for the available components to be listed in the wizard,

they need to be part of the classpath. For instance if you want to use other

component profiles specification in your project, you will need to add it as a Maven

Dependency and be part of classpath first. Refer to Section 3.3.1, “Adding a New

Maven Dependency” on how to do it.

For each profile specification the SBB should reference:

Creating a JAIN SLEE Service Building Block (SBB)

57

1. Highlight the profile specification in the available profiles table.

2. Click Select Profile

3. Review the Scoped Name and change if required.

4. If your SBB should contain an Address Profile Specification select it from the drop down list.

Click Next to proceed to the child SBB's dialog.

Figure 6.15. JAIN SLEE SBB Child SBBs selection in EclipSLEE

The child selection dialog contains a list of all the SBBs the plugin could find in your project. This

includes any SBBs that were installed as external components. If your custom SBBs are not listed,

verify that they have been compiled and the "jars" folder refreshed.

Chapter 6. Building JAIN SLEE...

58

Available Components Missing?

At the moment, in order for the available components to be listed in the wizard, they

need to be part of the classpath. For instance if you want to use the HSS Client

Enabler in your project, you will need to add it as a Maven Dependency and be

part of classpath first. Refer to Section 3.3.1, “Adding a New Maven Dependency”

on how to do it.

For each child SBB the SBB should reference:

1. Highlight the child SBB in the available SBBs table.

2. Click Select SBB

3. Review the Scoped Name and change if required.

4. Set the default priority of the child SBB.

Click Next to proceed to the resource adaptor types dialog.

Creating a JAIN SLEE Service Building Block (SBB)

59

Figure 6.16. JAIN SLEE SBB Resource Adaptor Type Bindings in EclipSLEE

The Resource Adaptor Type Bindings dialog contains a list of all the resource adaptor types the

plugin could find in your project. This includes any resource adaptor types that were installed as

external components.

Available Components Missing?

At the moment, in order for the available components to be listed in the wizard,

they need to be part of the classpath. For instance if you want to use the SIP11

Resource Adaptor Type for your project, you will need to add it as a Maven

Dependency and be part of classpath first. Refer to Section 3.3.1, “Adding a New

Maven Dependency” on how to do it.

For each resource adaptor type the SBB should reference:

1. Highlight the resource adaptor type in the available resource adaptor types table.

Chapter 6. Building JAIN SLEE...

60

2. Click Select RA Type

3. Optionally, specify the Activity Context Interface Factory Name.

4. If the RA Type should have resource adaptor entity bindings, click Edit Bindings....

Figure 6.17. JAIN SLEE SBB Resource Adaptor Type Bindings edit in

EclipSLEE

5. For each binding:

a. Click Add to create a new binding.

b. Specify the bindings JNDI object name.

c. Optionally, specify the resource adaptor entity link name.

6. Click OK to apply these bindings to the resource adaptor type.

Click Next to edit the SBB's environment entries.

Creating a JAIN SLEE Service Building Block (SBB)

61

Figure 6.18. JAIN SLEE SBB Environment Entries definition in EclipSLEE

Add an environment entry with the "Add" button. Set its name, type, value, and optionally,

description in the table. Do this for each environment entry.

Then click Finish to create the SBB.

Skipping optional steps

Finish can be clicked at any point after setting the SBB's identity if a skeleton SBB

is required. It is not necessary to complete each wizard page first.

The SBB Java file, MobicentsDemoSbb.java (plus the remaining interfaces and classes which

were selected at the wizard) is created in the specified package and opened for editing in the

workspace. The sbb-jar.xml deployment descriptor is updated to reflect the new sbb or created

if not already present. The resulting workspace can be seen below.

Chapter 6. Building JAIN SLEE...

62

Figure 6.19. JAIN SLEE SBB created in workspace using EclipSLEE

6.2. Editing a JAIN SLEE Service Building Block (SBB)

It is possible with EclipSLEE to edit existing components. When right-clicking in one of the JAIN

SLEE Service Building Block classes a similar menu should be shown:

Editing a JAIN SLEE Service Building Block (SBB)

63

Figure 6.20. Editing a JAIN SLEE Service Building Block through class file

It is also possible to edit by right-clicking on the sbb-jar.xml descriptor. In that case a sub-menu

allowing to pick which Service Building Block to edit is shown:

Chapter 6. Building JAIN SLEE...

64

Figure 6.21. Editing JAIN SLEE Service Building Blocks through XML

descriptor

After selecting the desired Service Building Block, the menu shown should be similar to the one

presented when using the class file to edit.

The following actions are available for a JAIN SLEE Service Building Block:

6.2.1. Edit SBB Identity

This operation can be accessed by selecting Identity... and allows to change the JAIN SLEE

Service Building Block identity (name, vendor, version) and it's description. The following dialog

is presented:

Edit SBB Classes

65

Figure 6.22. Editing JAIN SLEE Service Building Block Identity

Other components are not updated!

EclipSLEE does not automatically update other component descriptors in order to

reflect such identity change, so it should be made manually.

6.2.2. Edit SBB Classes

This operation can be accessed by selecting Classes... and allows to change which companion

classes for the SBB should exist. The following dialog is presented:

Chapter 6. Building JAIN SLEE...

66

Figure 6.23. Editing JAIN SLEE Service Building Block Classes

Impossible to undo delete operations!

Unchecking an option will delete the corresponding class, an irreversible operation,

so it should be used carefully.

6.2.3. Edit SBB CMP Fields

This operation can be accessed by selecting CMP Fields... and allows to Add, Remove or Modify

the existing SBB CMP fields. The following dialog is presented:

Edit SBB Usage Parameters

67

Figure 6.24. Editing JAIN SLEE Service Building Block CMP Fields

6.2.4. Edit SBB Usage Parameters

This operation can be accessed by selecting Usage Parameters... and allows to change whether

an Usage interface should be created and to Add or Remove SBB Usage Parameters. The

following dialog is presented:

Chapter 6. Building JAIN SLEE...

68

Figure 6.25. Editing JAIN SLEE Service Building Block Usage Parameters

Impossible to undo delete operations!

Unchecking an option will delete the corresponding class, an irreversible operation,

so it should be used carefully.

6.2.5. Edit SBB Events

This operation can be accessed by selecting Events... and allows to change the events fired by

the SBB. Either changing or removing the already selected ones as well as adding new ones. The

following dialog is presented:

Edit SBB Profile Specifications

69

Figure 6.26. Editing JAIN SLEE Service Building Block Events

6.2.6. Edit SBB Profile Specifications

This operation can be accessed by selecting Profiles... and allows to change the profile

specifications the SBB will use. Either changing or removing the already selected ones as well as

adding new ones. The following dialog is presented:

Chapter 6. Building JAIN SLEE...

70

Figure 6.27. Editing JAIN SLEE Service Building Block Profile Specifications

6.2.7. Edit SBB Child Relations

This operation can be accessed by selecting Children... and allows to change the Child Relations

for the SBB, by either changing or removing the existing ones as well as adding new ones. The

following dialog is presented:

Edit SBB Resource Adaptor Type Bindings

71

Figure 6.28. Editing JAIN SLEE Service Building Block Child Relations

6.2.8. Edit SBB Resource Adaptor Type Bindings

This operation can be accessed by selecting Resource Adaptor Bindings.... It allows to modify

or remove the existing Resource Adaptor Type bindings for this SBB and to add new ones. The

following dialog is presented:

Chapter 6. Building JAIN SLEE...

72

Figure 6.29. Editing JAIN SLEE Service Building Block Resource Adaptor

Type Bindings

6.2.9. Edit SBB Environment Entries

This operation can be accessed by selecting Environment Entries.... It allows to add, modify or

remove this SBB Environment Entries. The following dialog is presented:

Deleting a JAIN SLEE Service Building Block (SBB)

73

Figure 6.30. Editing JAIN SLEE Service Building Block Environment Entries

6.3. Deleting a JAIN SLEE Service Building Block (SBB)

It is possible with EclipSLEE to delete existing components. Right-clicking in one of the JAIN

SLEE Service Building Block classes or XML descriptor file (see Section 6.2, “Editing a JAIN SLEE

Service Building Block (SBB)”) and selecting the Delete option.

A confirmation dialog similar to the following should be presented:

Figure 6.31. Deleting a JAIN SLEE Service Building Block confirmation

dialog

Chapter 6. Building JAIN SLEE...

74

Impossible to undo this operation!

Deleting a component is an irreversible operation, so it should be used carefully.

Chapter 7.

75

Building JAIN SLEE Services
EclipSLEE provides means to create, edit and delete JAIN SLEE Services.

7.1. Creating a JAIN SLEE Service

The JAIN SLEE Service does not have a Maven module, instead it's part of the Deployable Unit

module resources.

To create a new JAIN SLEE Service, expand completely the du module folders, right-click on the

resources folder and select New → Other ... as shown below.

Figure 7.1. Creating a new JAIN SLEE Service in EclipSLEE

A dialog should appear. Expand the JAIN SLEE item and choose JAIN SLEE Service. The dialog

should now look like the following:

Chapter 7. Building JAIN SLEE...

76

Figure 7.2. Creating a new JAIN SLEE Service in EclipSLEE

Click Next to get the following dialog:

Creating a JAIN SLEE Service

77

Figure 7.3. Selecting the package and name for a new JAIN SLEE Service

in EclipSLEE

The source folder dialog will be completed if New → Other ... has been selected from right-clicking

on the deployable unit module resources folder. Otherwise it may need to be chosen by selecting

Browse... and selecting the desired location.

Name the service; the name must end with "service.xml", then click Next to specify the service's

SLEE identity.

Chapter 7. Building JAIN SLEE...

78

Figure 7.4. JAIN SLEE Service Identity dialog in EclipSLEE

The Name, Vendor and Version fields are mandatory and are used by the SLEE to identify the

event. The description field is optional, but strongly recommended to be completed to allow easy

identification of the service in future.

After completing these fields click Next to select a root SBB.

Creating a JAIN SLEE Service

79

Figure 7.5. JAIN SLEE Service Root SBB selection using EclipSLEE

All available root SBBs are listed in the table. Select the one that should be used for this service.

Available Components Missing?

At the moment, in order for the available components to be listed in the wizard,

they need to be part of the classpath. For instance if you want to use an external

root SBB for your project, you will need to add it as a Maven Dependency and be

part of classpath first. Refer to Section 3.3.1, “Adding a New Maven Dependency”

on how to do it.

My SBB is not listed.. why?

Check the following if your SBB is not listed:

Chapter 7. Building JAIN SLEE...

80

• Does the SBB have at least one initial event? That is, an event with direction

Receive or FireAndReceive, marked as initial-event and has at least one

initial event selector.

• Is the SBB shown in the project source list? If not, please cancel the Service

wizard, refresh the project so it shows up and try again.

Specify the default event priority, and if available for your root SBB, enable or disable Specify

service address profile table as required.

Click Finish to create the service.

The service descriptor is created in the specified folder and opened for editing in the workspace.

The resulting workspace can be seen below.

Figure 7.6. JAIN SLEE Service created in workspace using EclipSLEE

7.2. Editing a JAIN SLEE Service

It is possible with EclipSLEE to edit existing components. When right-clicking on the *-service.xml

descriptor a similar menu should be shown:

Edit Service Identity

81

Figure 7.7. Editing a JAIN SLEE Service through Service XML file

After selecting the desired Service, the menu shown allows you to select one of the following

actions to modify:

7.2.1. Edit Service Identity

This operation can be accessed by selecting Identity... and allows to change the JAIN SLEE

Service identity (name, vendor, version) and it's description. The following dialog is presented:

Chapter 7. Building JAIN SLEE...

82

Figure 7.8. Editing JAIN SLEE Service Identity

7.2.2. Edit Service Root SBB

This operation can be accessed by selecting Root SBB... and allows to change which SBB is to

be the Root SBB for this Service. The following dialog is presented:

Deleting a JAIN SLEE Service

83

Figure 7.9. Editing JAIN SLEE Service Root Service Building Block (SBB)

7.3. Deleting a JAIN SLEE Service

It is possible with EclipSLEE to delete existing components. Right-clicking in the JAIN SLEE

Service XML descriptor file (see Section 7.2, “Editing a JAIN SLEE Service”) and selecting the

Delete option.

A confirmation dialog similar to the following should be presented:

Figure 7.10. Deleting a JAIN SLEE Service confirmation dialog

Chapter 7. Building JAIN SLEE...

84

Impossible to undo this operation!

Deleting a component is an irreversible operation, so it should be used carefully.

Chapter 8.

85

Building JAIN SLEE Resource

Adaptor Types
EclipSLEE provides means to create, edit and delete JAIN SLEE Resource Adaptor Types.

8.1. Creating a JAIN SLEE Resource Adaptor Type

To create a component it may be easier (but not mandatory) to first create a package to contain

it. This package should be created as a child of the <ratype-module>/src/main/java folder. To do

this right-click on the src folder and select New → Package. Give the new package a name using

the popup dialog (shown below).

Figure 8.1. Creating a new Package in Eclipse

In case a new package is not created at this point, it can still be created in the Component wizard,

but no validation is performed at that time, regarding the package naming conventions.

To create a new JAIN SLEE RA Type, right-click on the created package (or the module entry if

the package is not yet created) and choose New → Other ... as shown below.

Chapter 8. Building JAIN SLEE...

86

Figure 8.2. Creating a new JAIN SLEE Component in EclipSLEE

A dialog should appear. Expand the JAIN SLEE item and choose JAIN SLEE Resource Adaptor

Type. The dialog should now look like the following:

Creating a JAIN SLEE Resource Adaptor Type

87

Figure 8.3. Creating a new JAIN SLEE RA Type in EclipSLEE

Click Next to get the following dialog:

Chapter 8. Building JAIN SLEE...

88

Figure 8.4. Selecting the package and name for a new JAIN SLEE RA Type

in EclipSLEE

The source folder and package dialogs will be completed if New → Other ... has been selected

from right-clicking on a package. Otherwise it may need to be chosen by selecting Browse... and

selecting the desired locations or typing it's name in the appropriate field and it will be created

in the end.

Name the RA Type; the name must end with "ActivityContextInterfaceFactory.java". Then

click Next to go to the component identity dialog, pictured below:

Creating a JAIN SLEE Resource Adaptor Type

89

Figure 8.5. JAIN SLEE Component Identity dialog in EclipSLEE

The Name, Vendor and Version fields are mandatory and are used by the SLEE to identify the

RA Type. The description field is optional, but strongly recommended to be completed to allow

easy identification of the RA Type in future.

After completing these fields click Next to specify the RA Type Libraries.

Chapter 8. Building JAIN SLEE...

90

Figure 8.6. JAIN SLEE RA Type Libraries dialog in EclipSLEE

This dialog allows to select which JAIN SLEE Libraries this RA Type should reference in it's

descriptor. Select them from the top list (Available Libraries) by clicking Select Library. To remove

them, select them from the bottom list (Selected Libraries) and click Deselect Library. When

done, click Next to specify the Events supported by this RA Type.

Creating a JAIN SLEE Resource Adaptor Type

91

Figure 8.7. JAIN SLEE RA Type events selection in EclipSLEE

This dialog allows you to specify which events can be fired by the Resource Adaptor Type

implementation, select them from the top list (Available Events) by clicking Select Event. To

remove them, select them from the bottom list (Selected Events) and click Deselect Event. When

done, click Next to edit the RA Type's Activity Objects.

Available Components Missing?

At the moment, in order for the available components to be listed in the wizard,

they need to be part of the classpath. For instance if you want to use the SIP11

Resource Adaptor Type for your project, you will need to add it as a Maven

Dependency and be part of classpath first. Refer to Section 3.3.1, “Adding a New

Maven Dependency” on how to do it.

Chapter 8. Building JAIN SLEE...

92

Figure 8.8. JAIN SLEE RA Type Activity Objects definition in EclipSLEE

Here, the RA Type's Activity objects type can be set. Add an Activity object by clicking on Add

and writing it's Java Type in the Activity Type column and selecting Create to have EclipSLEE

creating the interface or not. An Activity type can be removed by selecting it in the table and clicking

Remove. To modify any of the fields, click on it and it should be possible to edit/change the value.

In this same wizard page, it is possible to define whether to create or not a Resource Adaptor SBB

Interface (Provider) by checking or leaving unchecked the Create Resource Adaptor Interface

checkbox.

Once finished, click Finish to create the Resource Adaptor Type.

Editing a JAIN SLEE Resource Adaptor Type

93

Skipping optional steps

Finish can be clicked at any point after setting the Resource Adaptor Type's

identity if a skeleton Resource Adaptor Type is required. It is not necessary to

complete each wizard page first.

The Resource Adaptor Type Java file,

MobicentsDemoActivityContextInterfaceFactory.java (plus the remaining interfaces and

classes which were selected at the wizard) is created in the specified package and opened for

editing in the workspace. The ratype-jar.xml deployment descriptor is updated to reflect the

new ratype or created if not already present. The resulting workspace can be seen below.

Figure 8.9. JAIN SLEE Resource Adaptor Type created in workspace using

EclipSLEE

8.2. Editing a JAIN SLEE Resource Adaptor Type

It is possible with EclipSLEE to edit existing components. When right-clicking in one of the JAIN

SLEE Resource Adaptor Type classes a similar menu should be shown:

Chapter 8. Building JAIN SLEE...

94

Figure 8.10. Editing a JAIN SLEE Resource Adaptor Type through class file

It is also possible to edit by right-clicking on the resource-adaptor-type-jar.xml descriptor. In that

case a sub-menu allowing to pick which Resource Adaptor Type to edit is shown:

Edit RA Type Identity

95

Figure 8.11. Editing JAIN SLEE Resource Adaptor Types through XML

descriptor

After selecting the desired Resource Adaptor Type, the menu shown should be similar to the one

presented when using the class file to edit.

The following actions are available for a JAIN SLEE Resource Adaptor Type:

8.2.1. Edit RA Type Identity

This operation can be accessed by selecting Identity.... With this operation it is possible to change

the JAIN SLEE Resource Adaptor Type identity (name, vendor, version) and it's description. The

following dialog is presented:

Chapter 8. Building JAIN SLEE...

96

Figure 8.12. Editing JAIN SLEE Resource Adaptor Type Identity

Other components are not updated!

EclipSLEE does not automatically update other component descriptors in order to

reflect such identity change, so it should be made manually.

8.2.2. Edit RA Type Events

This operation can be accessed by selecting Events... and allows to modify the events for this

Resource Adaptor Type. The following dialog is presented:

Edit RA Type Activity Types

97

Figure 8.13. Editing JAIN SLEE Resource Adaptor Type Events

8.2.3. Edit RA Type Activity Types

This operation can be accessed by selecting Activity Types... and allows to add and remove the

activities for this Resource Adaptor Type. The following dialog is presented:

Chapter 8. Building JAIN SLEE...

98

Figure 8.14. Editing JAIN SLEE Resource Adaptor Type Activity Types

8.3. Deleting a JAIN SLEE Resource Adaptor Type

It is possible with EclipSLEE to delete existing components. Right-clicking in one of the JAIN SLEE

Resource Adaptor Type classes or XML descriptor file (see Section 8.2, “Editing a JAIN SLEE

Resource Adaptor Type”) and selecting the Delete option.

A confirmation dialog similar to the following should be presented:

Figure 8.15. Deleting a JAIN SLEE Resource Adaptor Type confirmation

dialog

Deleting a JAIN SLEE Resource Adaptor Type

99

Impossible to undo this operation!

Deleting a component is an irreversible operation, so it should be used carefully.

100

Chapter 9.

101

Building JAIN SLEE Resource

Adaptors
EclipSLEE provides means to create, edit and delete JAIN SLEE Resource Adaptors.

9.1. Creating a JAIN SLEE Resource Adaptor

To create a component it may be easier (but not mandatory) to first create a package to contain

it. This package should be created as a child of the <ra-module>/src/main/java folder. To do this

right-click on the src folder and select New → Package. Give the new package a name using the

popup dialog (shown below).

Figure 9.1. Creating a new Package in Eclipse

In case a new package is not created at this point, it can still be created in the Component wizard,

but no validation is performed at that time, regarding the package naming conventions.

To create a new JAIN SLEE Resource Adaptor, right-click on the created package (or the module

entry if the package is not yet created) and choose New → Other ... as shown below.

Chapter 9. Building JAIN SLEE...

102

Figure 9.2. Creating a new JAIN SLEE Component in EclipSLEE

A dialog should appear. Expand the JAIN SLEE item and choose JAIN SLEE Resource Adaptor.

The dialog should now look like the following:

Creating a JAIN SLEE Resource Adaptor

103

Figure 9.3. Creating a new JAIN SLEE Resource Adaptor in EclipSLEE

Click Next to get the following dialog:

Chapter 9. Building JAIN SLEE...

104

Figure 9.4. Selecting the package and name for a new JAIN SLEE Resource

Adaptor in EclipSLEE

The source folder and package dialogs will be completed if New → Other ... has been selected

from right-clicking on a package. Otherwise it may need to be chosen by selecting Browse... and

selecting the desired locations or typing it's name in the appropriate field and it will be created

in the end.

Name the Resource Adaptor; the name must end with "ResourceAdaptor.java". Then click Next

to go to the component identity dialog, pictured below:

Creating a JAIN SLEE Resource Adaptor

105

Figure 9.5. JAIN SLEE Component Identity dialog in EclipSLEE

The Name, Vendor and Version fields are mandatory and are used by the SLEE to identify the

Resource Adaptor. The description field is optional, but strongly recommended to be completed

to allow easy identification of the Resource Adaptor in future.

After completing these fields click Next to specify the Resource Adaptor Libraries.

Chapter 9. Building JAIN SLEE...

106

Figure 9.6. JAIN SLEE Resource Adaptor Libraries dialog in EclipSLEE

This dialog allows to select which JAIN SLEE Libraries this Resource Adaptor should reference

in it's descriptor. Select them from the top list (Available Libraries) by clicking Select Library. To

remove them, select them from the bottom list (Selected Libraries) and click Deselect Library.

When done, click Next to specify the RA Types the Resource Adaptor implements.

Creating a JAIN SLEE Resource Adaptor

107

Figure 9.7. JAIN SLEE Resource Adaptor RA Types selection in EclipSLEE

This dialog allows you to specify which RA Types this Resource Adaptor will implement. Select

them from the top list (Available RA Types) by clicking Select RA Type. To remove them, select

them from the bottom list (Selected RA Types) and click Deselect RA Type. When done, click

Next to edit the Resource Adaptor Config Properties.

Available Components Missing?

At the moment, in order for the available components to be listed in the wizard,

they need to be part of the classpath. For instance if you want to use the SIP11

Resource Adaptor Type for your project, you will need to add it as a Maven

Dependency and be part of classpath first. Refer to Section 3.3.1, “Adding a New

Maven Dependency” on how to do it.

Chapter 9. Building JAIN SLEE...

108

Figure 9.8. JAIN SLEE Resource Adaptor Config Properties definition in

EclipSLEE

Here, the Resource Adaptor's Config Properties can be set. Add a Config Property field by clicking

on Add and writing it's name on the Name column, selecting the appropriate Java Type in the

Type column and, this is optional, type a default value (if no value is to be set, delete the default

? which is inserted) in the Default Value column.

In this same wizard page, it is possible to define whether this Resource Adaptor supports

reconfiguration when in ACTIVE state by checking or leaving unchecked the This Resource

Adaptor supports active reconfiguration checkbox.

Once finished, click Finish to create the Resource Adaptor Type.

Editing a JAIN SLEE Resource Adaptor

109

Skipping optional steps

Finish can be clicked at any point after setting the Resource Adaptor's identity

if a skeleton Resource Adaptor is required. It is not necessary to complete each

wizard page first.

The Resource Adaptor Java file, MobicentsDemoResourceAdaptor.java (plus the remaining

interfaces and classes which were selected at the wizard) is created in the specified package and

opened for editing in the workspace. The ra-jar.xml deployment descriptor is updated to reflect

the new ratype or created if not already present. The resulting workspace can be seen below.

Figure 9.9. JAIN SLEE Resource Adaptor created in workspace using

EclipSLEE

9.2. Editing a JAIN SLEE Resource Adaptor

It is possible with EclipSLEE to edit existing components. When right-clicking in one of the JAIN

SLEE Resource Adaptor classes a similar menu should be shown:

Chapter 9. Building JAIN SLEE...

110

Figure 9.10. Editing a JAIN SLEE Resource Adaptor through class file

It is also possible to edit by right-clicking on the resource-adaptor-jar.xml descriptor. In that case

a sub-menu allowing to pick which Resource Adaptor to edit is shown:

Edit RA Identity

111

Figure 9.11. Editing JAIN SLEE Resource Adaptors through XML descriptor

After selecting the desired Resource Adaptor, the menu shown should be similar to the one

presented when using the class file to edit.

The following actions are available for a JAIN SLEE Resource Adaptor:

9.2.1. Edit RA Identity

This operation can be accessed by selecting Identity.... With this operation it is possible to

change the JAIN SLEE Resource Adaptor identity (name, vendor, version) and it's description.

The following dialog is presented:

Chapter 9. Building JAIN SLEE...

112

Figure 9.12. Editing JAIN SLEE Resource Adaptor Identity

Other components are not updated!

EclipSLEE does not automatically update other component descriptors in order to

reflect such identity change, so it should be made manually.

9.2.2. Edit RA Resource Adaptor Types

This operation can be accessed by selecting Resource Adaptor Types..., which allows to change

the Resource Adaptor Types being implemented by this RA. The following dialog is presented:

Edit RA Config Properties

113

Figure 9.13. Editing JAIN SLEE Resource Adaptor RA Types

9.2.3. Edit RA Config Properties

This operation can be accessed by selecting Config Properties..., allowing to add new Config

Properties to the Resource Adaptor or modify or remove the existing ones. The following dialog

is presented:

Chapter 9. Building JAIN SLEE...

114

Figure 9.14. Editing JAIN SLEE Resource Adaptor Configuration Properties

9.3. Deleting a JAIN SLEE Resource Adaptor

It is possible with EclipSLEE to delete existing components. Right-clicking in one of the JAIN

SLEE Resource Adaptor classes or XML descriptor file (see Section 9.2, “Editing a JAIN SLEE

Resource Adaptor”) and selecting the Delete option.

A confirmation dialog similar to the following should be presented:

Figure 9.15. Deleting a JAIN SLEE Resource Adaptor confirmation dialog

Deleting a JAIN SLEE Resource Adaptor

115

Impossible to undo this operation!

Deleting a component is an irreversible operation, so it should be used carefully.

116

Chapter 10.

117

Creating a JAIN SLEE Deployable

Unit
In order to create a Deployable Unit, the Mobicents Deployable Unit Plugin for Maven is to be

used. Unfortunately the EclipSLEE plugin is not yet integrated with third-party Maven tools, and

so this must be made manually.

Requirements

For this to work, Maven must be installed and JBOSS_HOME env var set to

point to where Mobicents' JBoss AS is installed. See Appendix B, Setting the

JBOSS_HOME Environment Variable on how to do this.

In a terminal window, head to the project folder and run the following command: mvn clean

install.

The output should be similar to the following:

...

[INFO] Executing tasks

 [copy] Copying 1 file to /Users/ammendonca/work/jboss/server/default/

deploy

...

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

...

At this time, the deployable unit descriptor and the JAR file have been created successfully and

deployed to JBoss.

118

Chapter 11.

119

Configuring Mobicents ElipSLEE

11.1. General Configuration

Currently there are no general configurations for the plugin. When they are available they can be

accessed by going to Preferences → Mobicents EclipSLEE

11.2. Component Templates Configuration

It is possible to customize the list of component presented when adding a new Maven dependency

(see Section 3.3.1, “Adding a New Maven Dependency”). This configuration can be made in

Eclipse preferences Mobicents EclipSLEE → Component Templates.

Figure 11.1. Mobicents EclipSLEE Component Templates Configuration

11.2.1. Add a New Component Template

To add a new component template, follow these steps:

1. Choose the type of component from the Component Type dropdown menu. The options

Enabler, Resource Adaptor Type and Library are available.

2. Fill the mandatory fields, Group ID, Artifact ID, Version

3. Optionally fill the Description entry, which is what is shown later in the component selection

list. If not filled "<Group ID> : <Artifact ID> : <Version>" will be shown.

Chapter 11. Configuring Mobic...

120

4. Click Add Component

11.2.2. Editing a Component Template

For simplicity, editing is only allowed for the version of the component template. To do so:

1. Double-click the entry in the list

2. The version field will become editable. Change it to the desired value

3. Click some other entry, so the changes are accepted

11.2.3. Removing a Component Template

To remove a component from the template list:

1. Select the entry in the list

2. Click Remove Component

121

Appendix A. Java Development Kit

(JDK): Installing, Configuring and

Running
The Mobicents Platform is written in Java; therefore, before running any Mobicents server, you

must have a working Java Runtime Environment (JRE) or Java Development Kit (JDK) installed

on your system. In addition, the JRE or JDK you are using to run Mobicents must be version

5 or higher1.

Should I Install the JRE or JDK? Although you can run Mobicents servers using the Java

Runtime Environment, we assume that most users are developers interested in developing Java-

based, Mobicents-driven solutions. Therefore, in this guide we take the tact of showing how to

install the full Java Development Kit.

Should I Install the 32-Bit or the 64-Bit JDK, and Does It Matter? Briefly stated: if you are

running on a 64-Bit Linux or Windows platform, you should consider installing and running the 64-

bit JDK over the 32-bit one. Here are some heuristics for determining whether you would rather

run the 64-bit Java Virtual Machine (JVM) over its 32-bit cousin for your application:

• Wider datapath: the pipe between RAM and CPU is doubled, which improves the performance

of memory-bound applications when using a 64-bit JVM.

• 64-bit memory addressing gives virtually unlimited (1 exabyte) heap allocation. However large

heaps affect garbage collection.

• Applications that run with more than 1.5 GB of RAM (including free space for garbage collection

optimization) should utilize the 64-bit JVM.

• Applications that run on a 32-bit JVM and do not require more than minimal heap sizes will gain

nothing from a 64-bit JVM. Barring memory issues, 64-bit hardware with the same relative clock

speed and architecture is not likely to run Java applications faster than their 32-bit cousin.

Note that the following instructions detail how to download and install the 32-bit JDK, although the

steps are nearly identical for installing the 64-bit version.

Downloading. You can download the Sun JDK 5.0 (Java 2 Development Kit) from Sun's

website: http://java.sun.com/javase/downloads/index_jdk5.jsp. Click on the Download link next

to "JDK 5.0 Update <x>" (where <x> is the latest minor version release number). On the next

page, select your language and platform (both architecture—whether 32- or 64-bit—and operating

1 At this point in time, it is possible to run most Mobicents servers, such as the JAIN SLEE, using a Java 6 JRE or JDK.

Be aware, however, that presently the XML Document Management Server does not run on Java 6. We suggest checking

the Mobicents web site, forums or discussion pages if you need to inquire about the status of running the XML Document

Management Server with Java 6.

http://java.sun.com/javase/downloads/index_jdk5.jsp

Appendix A. Java Development ...

122

system), read and agree to the Java Development Kit 5.0 License Agreement, and proceed

to the download page.

The Sun website will present two download alternatives to you: one is an RPM inside a self-

extracting file (for example, jdk-1_5_0_16-linux-i586-rpm.bin), and the other is merely a self-

extracting file (e.g. jdk-1_5_0_16-linux-i586.bin). If you are installing the JDK on Red Hat

Enterprise Linux, Fedora, or another RPM-based Linux system, we suggest that you download

the self-extracting file containing the RPM package, which will set up and use the SysV service

scripts in addition to installing the JDK. We also suggest installing the self-extracting RPM file if

you will be running Mobicents in a production environment.

Installing. The following procedures detail how to install the Java Development Kit on both

Linux and Windows.

Procedure A.1. Installing the JDK on Linux

• Regardless of which file you downloaded, you can install it on Linux by simply making sure

the file is executable and then running it:

~]$ chmod +x "jdk-1_5_0_<minor_version>-linux-<architecture>-rpm.bin"

~]$./"jdk-1_5_0_<minor_version>-linux-<architecture>-rpm.bin"

You Installed Using the Non-RPM Installer, but Want the

SysV Service Scripts

If you download the non-RPM self-extracting file (and installed it), and you

are running on an RPM-based system, you can still set up the SysV service

scripts by downloading and installing one of the -compat packages from

the JPackage project. Remember to download the -compat package which

corresponds correctly to the minor release number of the JDK you installed.

The compat packages are available from ftp://jpackage.hmdc.harvard.edu/

JPackage/1.7/generic/RPMS.non-free/.

Important

You do not need to install a -compat package in addition to the JDK if you installed

the self-extracting RPM file! The -compat package merely performs the same SysV

service script set up that the RPM version of the JDK installer does.

Procedure A.2. Installing the JDK on Windows

• Using Explorer, simply double-click the downloaded self-extracting installer and follow the

instructions to install the JDK.

ftp://jpackage.hmdc.harvard.edu/JPackage/1.7/generic/RPMS.non-free/
ftp://jpackage.hmdc.harvard.edu/JPackage/1.7/generic/RPMS.non-free/

123

Configuring. Configuring your system for the JDK consists in two tasks: setting the JAVA_HOME

environment variable, and ensuring that the system is using the proper JDK (or JRE) using the

alternatives command. Setting JAVA_HOME usually overrides the values for java, javac and

java_sdk_1.5.0 in alternatives, but we will set them all just to be safe and consistent.

Setting the JAVA_HOME Environment Variable on Generic Linux

After installing the JDK, you must ensure that the JAVA_HOME environment variable exists and

points to the location of your JDK installation.

Setting the JAVA_HOME Environment Variable on Linux. You can determine whether

JAVA_HOME is set on your system by echoing it on the command line:

~]$ echo $JAVA_HOME

If JAVA_HOME is not set already, then you must set its value to the location of the JDK installation

on your system. You can do this by adding two lines to your personal ~/.bashrc configuration

file. Open ~/.bashrc (or create it if it doesn't exist) and add a line similar to the following one

anywhere inside the file:

export JAVA_HOME="/usr/lib/jvm/jdk1.5.0_<version>"

You should also set this environment variable for any other users who will be running

Mobicents (any environment variables exported from ~/.bashrc files are local to that user).

Setting java, javac and java_sdk_1.5.0 Using the alternatives command

Selecting the Correct System JVM on Linux using alternatives . On systems with

the alternatives command, including Red Hat Enterprise Linux and Fedora, you can easily

choose which JDK (or JRE) installation you wish to use, as well as which java and javac

executables should be run when called.

As the root user, call /usr/sbin/alternatives with the --config java option to select

between JDKs and JREs installed on your system:

root@localhost ~]$ /usr/sbin/alternatives --config java

There are 3 programs which provide 'java'.

 Selection Command

 1 /usr/lib/jvm/jre-1.5.0-gcj/bin/java

 2 /usr/lib/jvm/jre-1.6.0-sun/bin/java

*+ 3 /usr/lib/jvm/jre-1.5.0-sun/bin/java

Appendix A. Java Development ...

124

Enter to keep the current selection[+], or type selection number:

In our case, we want to use the Sun JDK, version 5, that we downloaded and installed, to

run the java executable. In the alternatives information printout above, a plus (+) next to a

number indicates the one currently being used. As per alternatives' instructions, pressing

Enter will simply keep the current JVM, or you can enter the number corresponding to the

JVM you would prefer to use.

Repeat the procedure above for the javac command and the java_sdk_1.5.0 environment

variable, as the root user:

~]$ /usr/sbin/alternatives --config javac

~]$ /usr/sbin/alternatives --config java_sdk_1.5.0

Setting the JAVA_HOME Environment Variable on Windows

For information on how to set environment variables in Windows, refer to http://

support.microsoft.com/kb/931715.

Testing. Finally, to make sure that you are using the correct JDK or Java version (5 or higher),

and that the java executable is in your PATH, run the java -version command in the terminal

from your home directory:

~]$ java -version

java version "1.5.0_16"

Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0_16-b03)

Java HotSpot(TM) Client VM (build 1.5.0_16-b03, mixed mode, sharing)

Uninstalling. There is usually no reason (other than space concerns) to remove a particular

JDK from your system, given that you can switch between JDKs and JREs easily using

alternatives, and/or by setting JAVA_HOME.

Uninstalling the JDK on Linux. On RPM-based systems, you can uninstall the JDK using the

yum remove <jdk_rpm_name> command.

Uninstalling the JDK on Windows. On Windows systems, check the JDK entry in the Start

menu for an uninstall command, or use Add/Remove Programs.

http://support.microsoft.com/kb/931715
http://support.microsoft.com/kb/931715

125

Appendix B. Setting the

JBOSS_HOME Environment Variable
The Mobicents Platform (Mobicents) is built on top of the JBoss Application Server. You

do not need to set the JBOSS_HOME environment variable to run any of the Mobicents Platform

servers unless JBOSS_HOME is already set.

The best way to know for sure whether JBOSS_HOME was set previously or not is to perform a

simple check which may save you time and frustration.

Checking to See If JBOSS_HOME is Set on Unix. At the command line, echo $JBOSS_HOME

to see if it is currently defined in your environment:

~]$ echo $JBOSS_HOME

The Mobicents Platform and most Mobicents servers are built on top of the JBoss Application

Server (JBoss Application Server). When the Mobicents Platform or Mobicents servers are

built from source, then JBOSS_HOME must be set, because the Mobicents files are installed into (or

“over top of” if you prefer) a clean JBoss Application Server installation, and the build process

assumes that the location pointed to by the JBOSS_HOME environment variable at the time of

building is the JBoss Application Server installation into which you want it to install the Mobicents

files.

This guide does not detail building the Mobicents Platform or any Mobicents servers from source.

It is nevertheless useful to understand the role played by JBoss AS and JBOSS_HOME in the

Mobicents ecosystem.

The immediately-following section considers whether you need to set JBOSS_HOME at all and, if

so, when. The subsequent sections detail how to set JBOSS_HOME on Unix and Windows

Important

Even if you fall into the category below of not needing to set JBOSS_HOME, you may

want to for various reasons anyway. Also, even if you are instructed that you do

not need to set JBOSS_HOME, it is good practice nonetheless to check and make

sure that JBOSS_HOME actually isn't set or defined on your system for some reason.

This can save you both time and frustration.

You DO NOT NEED to set JBOSS_HOME if...

• ...you have installed the Mobicents Platform binary distribution.

Appendix B. Setting the JBOSS...

126

• ...you have installed a Mobicents server binary distribution which bundles JBoss Application

Server.

You MUST set JBOSS_HOME if...

• ...you are installing the Mobicents Platform or any of the Mobicents servers from source.

• ...you are installing the Mobicents Platform binary distribution, or one of the Mobicents server

binary distributions, which do not bundle JBoss Application Server.

Naturally, if you installed the Mobicents Platform or one of the Mobicents server binary releases

which do not bundle JBoss Application Server, yet requires it to run, then you should install

before setting JBOSS_HOME or proceeding with anything else.

Setting the JBOSS_HOME Environment Variable on Unix. The JBOSS_HOME environment

variable must point to the directory which contains all of the files for the Mobicents Platform or

individual Mobicents server that you installed. As another hint, this topmost directory contains a

bin subdirectory.

Setting JBOSS_HOME in your personal ~/.bashrc startup script carries the advantage of retaining

effect over reboots. Each time you log in, the environment variable is sure to be set for you, as a

user. On Unix, it is possible to set JBOSS_HOME as a system-wide environment variable, by defining

it in /etc/bashrc, but this method is neither recommended nor detailed in these instructions.

Procedure B.1. To Set JBOSS_HOME on Unix...

1. Open the ~/.bashrc startup script, which is a hidden file in your home directory, in a text

editor, and insert the following line on its own line while substituting for the actual install

location on your system:

export JBOSS_HOME="/home/<username>/<path>/<to>/<install_directory>"

2. Save and close the .bashrc startup script.

3. You should source the .bashrc script to force your change to take effect, so that JBOSS_HOME

becomes set for the current session1.

~]$ source ~/.bashrc

4. Finally, ensure that JBOSS_HOME is set in the current session, and actually points to the correct

location:

1 Note that any other terminals which were opened prior to your having altered .bashrc will need to source

~/.bashrc as well should they require access to JBOSS_HOME.

You MUST set JBOSS_HOME if...

127

Note

The command line usage below is based upon a binary installation of

the Mobicents Platform. In this sample output, JBOSS_HOME has been set

correctly to the topmost_directory of the Mobicents installation. Note that

if you are installing one of the standalone Mobicents servers (with JBoss AS

bundled!), then JBOSS_HOME would point to the topmost_directory of your

server installation.

~]$ echo $JBOSS_HOME

/home/silas/

Setting the JBOSS_HOME Environment Variable on Windows. The JBOSS_HOME

environment variable must point to the directory which contains all of the files for the Mobicents

Platform or individual Mobicents server that you installed. As another hint, this topmost directory

contains a bin subdirectory.

For information on how to set environment variables in recent versions of Windows, refer to http://

support.microsoft.com/kb/931715.

http://support.microsoft.com/kb/931715
http://support.microsoft.com/kb/931715

128

129

Appendix C. Revision History
Revision History

Revision 1.0 Tue Nov 09 2010 AlexandreMendonça

Creation of the Mobicents EclipSLEE Plugin User Guide.

Revision 1.1 Fri Mar 25 2011 AlexandreMendonça

Addition of the Mobicents EclipSLEE Plugin support to Resource Adaptor Type and Resource

Adaptor to the User Guide.

Revision 1.2 Fri Apr 22 2011 AlexandreMendonça

Addition of the Mobicents EclipSLEE Plugin support for component editing to the User Guide.

130

131

Index
F
feedback, viii

132

	Mobicents EclipSLEE Plugin User Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. Provide feedback to the authors!

	Chapter 1. Introduction to Mobicents JAIN SLEE Eclipse
	Chapter 2. Installing Mobicents JAIN SLEE
	2.1. Pre-Install Requirements and Prerequisites
	2.1.1. Hardware Requirements
	2.1.2. Software Prerequisites

	2.2. Install Alternatives
	2.2.1. Update Site
	2.2.2. Manually
	2.2.3. Nightly Builds Update Site

	2.3. Uninstall Mobicents EclipSLEE

	Chapter 3. Creating and Managing a JAIN SLEE Project
	3.1. Creating a JAIN SLEE Project
	3.2. Managing Project Modules
	3.2.1. Adding New Modules
	3.2.2. Editing Existing Modules
	3.2.3. Removing Existing Modules

	3.3. Managing Project Dependencies
	3.3.1. Adding a New Maven Dependency
	3.3.2. Removing a Maven Dependency

	Chapter 4. Building JAIN SLEE Events
	4.1. Creating a JAIN SLEE Event
	4.2. Editing a JAIN SLEE Event
	4.2.1. Edit Event Identity

	4.3. Deleting a JAIN SLEE Event

	Chapter 5. Building JAIN SLEE Profile Specifications
	5.1. Creating a JAIN SLEE Profile Specification
	5.2. Editing a JAIN SLEE Profile Specification
	5.3. Deleting a JAIN SLEE Profile Specification

	Chapter 6. Building JAIN SLEE Service Building Block (SBBs)
	6.1. Creating a JAIN SLEE Service Building Block (SBB)
	6.2. Editing a JAIN SLEE Service Building Block (SBB)
	6.2.1. Edit SBB Identity
	6.2.2. Edit SBB Classes
	6.2.3. Edit SBB CMP Fields
	6.2.4. Edit SBB Usage Parameters
	6.2.5. Edit SBB Events
	6.2.6. Edit SBB Profile Specifications
	6.2.7. Edit SBB Child Relations
	6.2.8. Edit SBB Resource Adaptor Type Bindings
	6.2.9. Edit SBB Environment Entries

	6.3. Deleting a JAIN SLEE Service Building Block (SBB)

	Chapter 7. Building JAIN SLEE Services
	7.1. Creating a JAIN SLEE Service
	7.2. Editing a JAIN SLEE Service
	7.2.1. Edit Service Identity
	7.2.2. Edit Service Root SBB

	7.3. Deleting a JAIN SLEE Service

	Chapter 8. Building JAIN SLEE Resource Adaptor Types
	8.1. Creating a JAIN SLEE Resource Adaptor Type
	8.2. Editing a JAIN SLEE Resource Adaptor Type
	8.2.1. Edit RA Type Identity
	8.2.2. Edit RA Type Events
	8.2.3. Edit RA Type Activity Types

	8.3. Deleting a JAIN SLEE Resource Adaptor Type

	Chapter 9. Building JAIN SLEE Resource Adaptors
	9.1. Creating a JAIN SLEE Resource Adaptor
	9.2. Editing a JAIN SLEE Resource Adaptor
	9.2.1. Edit RA Identity
	9.2.2. Edit RA Resource Adaptor Types
	9.2.3. Edit RA Config Properties

	9.3. Deleting a JAIN SLEE Resource Adaptor

	Chapter 10. Creating a JAIN SLEE Deployable Unit
	Chapter 11. Configuring Mobicents ElipSLEE
	11.1. General Configuration
	11.2. Component Templates Configuration
	11.2.1. Add a New Component Template
	11.2.2. Editing a Component Template
	11.2.3. Removing a Component Template

	Appendix A. Java Development Kit (JDK): Installing, Configuring and Running
	Appendix B. Setting the JBOSS_HOME Environment Variable
	Appendix C. Revision History
	Index

